Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
J Neurooncol ; 153(3): 487-496, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34152528

RESUMO

BACKGROUND: Animal brain-tumor models have demonstrated a synergistic interaction between radiation therapy and a ketogenic diet (KD). Metformin has in-vitro anti-cancer activity, through AMPK activation and mTOR inhibition. We hypothesized that the metabolic stress induced by a KD combined with metformin would enhance radiation's efficacy. We sought to assess the tolerability and feasibility of this approach. METHODS: A single-institution phase I clinical trial. Radiotherapy was either 60 or 35 Gy over 6 or 2 weeks, for newly diagnosed and recurrent gliomas, respectively. The dietary intervention consisted of a Modified Atkins Diet (ModAD) supplemented with medium chain triglycerides (MCT). There were three cohorts: Dietary intervention alone, and dietary intervention combined with low-dose or high-dose metformin; all patients received radiotherapy. Factors associated with blood ketone levels were investigated using a mixed-model analysis. RESULTS: A total of 13 patients were accrued, median age 61 years, of whom six had newly diagnosed and seven with recurrent disease. All completed radiation therapy; five patients stopped the metabolic intervention early. Metformin 850 mg three-times daily was poorly tolerated. There were no serious adverse events. Ketone levels were associated with dietary factors (ketogenic ratio, p < 0.001), use of metformin (p = 0. 02) and low insulin levels (p = 0.002). Median progression free survival was ten and four months for newly diagnosed and recurrent disease, respectively. CONCLUSIONS: The intervention was well tolerated. Higher serum ketone levels were associated with both dietary intake and metformin use. The recommended phase II dose is eight weeks of a ModAD combined with 850 mg metformin twice daily.


Assuntos
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/radioterapia , Terapia Combinada , Glioma/tratamento farmacológico , Glioma/radioterapia , Humanos , Cetonas , Metformina/uso terapêutico , Pessoa de Meia-Idade , Recidiva Local de Neoplasia
2.
Isr Med Assoc J ; 23(10): 625-630, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34672443

RESUMO

BACKGROUND: Only a small proportion of schizophrenia patients present with catatonic symptoms. Imaging studies suggest that brain motor circuits are involved in the underlying pathology of catatonia. However, data about diffusivity dysregulation of these circuits in catatonic schizophrenia are scarce. OBJECTIVES: To assess the involvement of brain motor circuits in schizophrenia patients with catatonia. METHODS: Diffusion tensor imaging (DTI) was used to measure white matter signals in selected brain regions linked to motor circuits. Relevant DTI data of seven catatonic schizophrenia patients were compared to those of seven non-catatonic schizophrenia patients, matched for sex, age, and education level. RESULTS: Significantly elevated fractional anisotropy values were found in the splenium of the corpus callosum, the right peduncle of the cerebellum, and the right internal capsule of the schizophrenia patients with catatonia compared to those without catatonia. This finding showed altered diffusivity in selected motor-related brain areas. CONCLUSIONS: Catatonic schizophrenia is associated with dysregulation of the connectivity in specific motoric brain regions and corresponding circuits. Future DTI studies are needed to address the neural correlates of motor abnormalities in schizophrenia-related catatonia during the acute and remitted state of the illness to identify the specific pathophysiology of this disorder.


Assuntos
Imagem de Tensor de Difusão/métodos , Córtex Motor , Esquizofrenia Catatônica , Adulto , Anisotropia , Cerebelo/diagnóstico por imagem , Cerebelo/fisiopatologia , Conectoma/métodos , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/fisiopatologia , Correlação de Dados , Manual Diagnóstico e Estatístico de Transtornos Mentais , Feminino , Humanos , Cápsula Interna/diagnóstico por imagem , Cápsula Interna/fisiopatologia , Masculino , Córtex Motor/diagnóstico por imagem , Córtex Motor/fisiopatologia , Escalas de Graduação Psiquiátrica , Esquizofrenia Catatônica/diagnóstico , Esquizofrenia Catatônica/fisiopatologia
3.
J Nanobiotechnology ; 17(1): 3, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30630490

RESUMO

BACKGROUND: Retinal degeneration diseases affect millions of patients worldwide and lead to incurable vision loss. These diseases are caused by pathologies in the retina and underlying choroid, located in the back of the eye. One of the major challenges in the development of treatments for these blinding diseases is the safe and efficient delivery of therapeutics into the back of the eye. Previous studies demonstrated that narrow size distribution core-shell near infra-red fluorescent iron oxide (IO) nanoparticles (NPs) coated with human serum albumin (HSA, IO/HSA NPs) increase the half-life of conjugated therapeutic factors, suggesting they may be used for sustained release of therapeutics. In the present study, the in vivo tracking by MRI and the long term safety of IO/HSA NPs delivery into the suprachoroid of a rat model of retinal degeneration were assessed. RESULTS: Twenty-five Royal College of Surgeons (RCS) pigmented rats received suprachoroidal injection of 20-nm IO/HSA NPs into the right eye. The left eye was not injected and used as control. Animals were examined by magnetic resonance imaging (MRI), electroretinogram (ERG) and histology up to 30 weeks following injection. IO/HSA NPs were detected in the back part of the rats' eyes up to 30 weeks following injection by MRI, and up to 6 weeks by histology. No significant differences in retinal structure and function were observed between injected and non-injected eyes. There was no significant difference in the weight of IO/HSA NP-injected animals compared to non-injected rats. CONCLUSIONS: MRI could track the nanoparticles in the posterior segment of the injected eyes demonstrating their long-term persistence, and highlighting the possible use of MRI for translational studies in animals and in future clinical studies. Suprachoroidal injection of IO/HSA NPs showed no sign of adverse effects on retinal structure and function in a rat model of retinal degeneration, suggesting that suprachoroidal delivery of IO/HSA NPs is safe and that these NPs may be used in future translational and clinical studies for extended release drug delivery at the back of the eye.


Assuntos
Portadores de Fármacos/química , Nanopartículas de Magnetita/química , Retina/metabolismo , Albumina Sérica Humana/química , Animais , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Corantes Fluorescentes/química , Humanos , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/toxicidade , Tamanho da Partícula , Ratos , Degeneração Retiniana/metabolismo , Propriedades de Superfície , Fatores de Tempo , Distribuição Tecidual
4.
Isr Med Assoc J ; 18(5): 283-5, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27430085

RESUMO

BACKGROUND: Although fat grafting is a common technique to repair defects after breast cancer reconstruction surgery and has a low complication rate, the relation between fat grafting and the risk of breast cancer is unknown. Clinical trials to investigate this connection can elucidate the benefits and potential risks of fat grafting in oncology patients. OBJECTIVES: To establish an efficient experimental model, using magnetic resonance imaging (MRI) scans, for comparing different breast tumor study groups post-fat grafting. METHODS: Breast tumor cells were injected into immunocompromised mice. After tumors formed they were removed. Liposuction was performed in a female human donor and fat was collected. Cells were extracted from the fat by enzymatic digestion. Immunocompromised mice were randomized into four groups: a preliminary experiment group and three equal groups according to the type of fat graft: (i) fresh fat enriched with adipose-derived mesenchymal stem cells (AdMSCs), (ii) fresh fat without cell enrichment, and (iii) no fat injected. Tumor volume was assessed by serial MRI scans. RESULTS: The rate of tumor growth was higher in the enriched fat group compared to the non-enriched fat group. CONCLUSIONS: This experimental model is an effective measurable method, allowing future investigation of the effect of autologous fat on breast cancer.


Assuntos
Neoplasias da Mama , Mama/cirurgia , Mamoplastia , Gordura Subcutânea/transplante , Animais , Mama/patologia , Neoplasias da Mama/patologia , Neoplasias da Mama/cirurgia , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Mamoplastia/efeitos adversos , Mamoplastia/métodos , Camundongos , Modelos Teóricos , Transplante Autólogo/efeitos adversos , Transplante Autólogo/métodos , Carga Tumoral
5.
Radiol Oncol ; 50(1): 28-38, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-27069447

RESUMO

BACKGROUND: Electroporation-based therapies such as electrochemotherapy (ECT) and irreversible electroporation (IRE) are emerging as promising tools for treatment of tumors. When applied to the brain, electroporation can also induce transient blood-brain-barrier (BBB) disruption in volumes extending beyond IRE, thus enabling efficient drug penetration. The main objective of this study was to develop a statistical model predicting cell death and BBB disruption induced by electroporation. This model can be used for individual treatment planning. MATERIAL AND METHODS: Cell death and BBB disruption models were developed based on the Peleg-Fermi model in combination with numerical models of the electric field. The model calculates the electric field thresholds for cell kill and BBB disruption and describes the dependence on the number of treatment pulses. The model was validated using in vivo experimental data consisting of rats brains MRIs post electroporation treatments. RESULTS: Linear regression analysis confirmed that the model described the IRE and BBB disruption volumes as a function of treatment pulses number (r(2) = 0.79; p < 0.008, r(2) = 0.91; p < 0.001). The results presented a strong plateau effect as the pulse number increased. The ratio between complete cell death and no cell death thresholds was relatively narrow (between 0.88-0.91) even for small numbers of pulses and depended weakly on the number of pulses. For BBB disruption, the ratio increased with the number of pulses. BBB disruption radii were on average 67% ± 11% larger than IRE volumes. CONCLUSIONS: The statistical model can be used to describe the dependence of treatment-effects on the number of pulses independent of the experimental setup.

6.
Retina ; 35(1): 82-94, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25077536

RESUMO

PURPOSE: To perform a comprehensive comparative analysis of nonmetallic intraocular foreign bodies (IOFBs) using computed tomography (CT) and magnetic resonance imaging (MRI). METHODS: An ex vivo model of porcine eyes was used to study IOFBs consisting of 10 different materials: plastic, eyeglass lens, bottle glass, windshield glass, porcelain, gravel stone, concrete, wood, thorn, and pencil graphite. The study included 30 eyes with IOFBs and 6 control eyes. Each eye was scanned by CT and MRI. Images were analyzed by three-dimensional viewing software to determine distinguishing characteristics for each material. RESULTS: Analysis of MRI and CT scans yielded distinguishing characteristics for each of the 10 materials, and this information was integrated into a clinical algorithm that enables their distinction. More materials were identified by MRI than by CT, and smaller IOFB size was associated with lower detectability. Review of CT and head-coil MRI scans by masked specialists yielded a 95% agreement rate and allowed detection of most IOFBs. CONCLUSION: Magnetic resonance imaging was superior to CT in IOFB detection. Using these modalities, a set of distinguishing characteristics was established for the identification of the 10 studied materials. We recommend MRI to be part of the evaluation of patients with a suspected IOFB, after CT to rule out metallic IOFBs.


Assuntos
Corpos Estranhos no Olho/diagnóstico , Ferimentos Oculares Penetrantes/diagnóstico , Imageamento por Ressonância Magnética , Metais , Modelos Animais , Tomografia Computadorizada por Raios X , Animais , Imageamento Tridimensional , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Suínos
7.
Retina ; 35(9): 1898-904, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25961124

RESUMO

PURPOSE: To validate and evaluate the accuracy of an algorithm for the identification of nonmetallic intraocular foreign body composition based on computed tomography and magnetic resonance imaging. METHODS: An algorithm for the identification of 10 nonmetallic materials based on computed tomography and magnetic resonance imaging has been previously determined in an ex vivo porcine model. Materials were classified into 4 groups (plastic, glass, stone, and wood). The algorithm was tested by 40 ophthalmologists, which completed a questionnaire including 10 sets of computed tomography and magnetic resonance images of eyes with intraocular foreign bodies and were asked to use the algorithm to identify their compositions. Rates of exact material identification and group identification were measured. RESULTS: Exact material identification was achieved in 42.75% of the cases, and correct group identification in 65%. Using the algorithm, 6 of the materials were exactly identified by over 50% of the participants, and 7 were correctly classified according to their groups by over 75% of the materials. DISCUSSION: The algorithm was validated and was found to enable correct identification of nonmetallic intraocular foreign body composition in the majority of cases. This is the first study to report and validate a clinical tool allowing intraocular foreign body composition based on their appearance in computed tomography and magnetic resonance imaging, which was previously impossible.


Assuntos
Algoritmos , Corpos Estranhos no Olho/diagnóstico , Ferimentos Oculares Penetrantes/diagnóstico , Imageamento por Ressonância Magnética , Tomografia Computadorizada por Raios X , Animais , Modelos Animais de Doenças , Enucleação Ocular , Corpos Estranhos no Olho/diagnóstico por imagem , Ferimentos Oculares Penetrantes/diagnóstico por imagem , Feminino , Sedimentos Geológicos , Vidro , Humanos , Masculino , Plásticos , Inquéritos e Questionários , Sus scrofa , Madeira
8.
J Neurotrauma ; 41(3-4): 430-446, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37776183

RESUMO

The blood-brain barrier (BBB) is composed of brain microvasculature that provides selective transport of solutes from the systemic circulation into the central nervous system to protect the brain and spinal microenvironment. Damage to the BBB in the acute phase after traumatic brain injury (TBI) is recognized as a major underlying mechanism leading to secondary long-term damage. Because of the lack of technological ability to detect subtle BBB disruption (BBBd) in the chronic phase, however, the presence of chronic BBBd is disputable. Thus, the dynamics and course of long-term BBBd post-TBI remains elusive. Thirty C57BL/6 male mice subjected to TBI using our weight drop closed head injury model and 19 naïve controls were scanned by magnetic resonance imaging (MRI) up to 540 days after injury. The BBB maps were calculated from delayed contrast extravasation MRI (DCM) with high spatial resolution and high sensitivity to subtle BBBd, enabling depiction and quantification of BBB permeability. At each time point, 2-6 animals were sacrificed and their brains were extracted, sectioned, and stained for BBB biomarkers including: blood microvessel coverage by astrocyte using GFAP, AQP4, ZO-1 gaps, and IgG leakage. We found that DCM provided depiction of subtle yet significant BBBd up to 1.5 years after TBI, with significantly higher sensitivity than standard contrast-enhanced T1-weighted and T2-weighted MRI (BBBd volumes main effect DCM/T1/T2 p < 0.0001 F(2,70) = 107.3, time point p < 0.0001 F(2,133, 18.66) = 23.53). In 33% of the cases, both in the acute and chronic stages, there was no detectable enhancement on standard T1-MRI, nor detectable hyperintensities on T2-MRI, whereas DCM showed significant BBBd volumes. The BBBd values of TBI mice at the chronic stage were found significantly higher compared with age matched naïve animals at 30, 60, and 540 days. The calculated BBB maps were histologically validated by determining significant correlation between the calculated levels of disruption and a diverse set of histopathological parameters obtained from different brain regions, presenting different components of the BBB. Cumulative evidence from recent years points to BBBd as a central component of the pathophysiology of TBI. Therefore, it is expected that routine use of highly sensitive non-invasive techniques to measure BBBd, such as DCM with advanced analysis methods, may enhance our understanding of the changes in BBB function after TBI. Application of the DCM technology to other CNS disorders, as well as to normal aging, may shed light on the involvement of chronic subtle BBBd in these conditions.


Assuntos
Barreira Hematoencefálica , Lesões Encefálicas Traumáticas , Masculino , Animais , Camundongos , Barreira Hematoencefálica/diagnóstico por imagem , Camundongos Endogâmicos C57BL , Encéfalo/irrigação sanguínea , Imageamento por Ressonância Magnética/métodos , Lesões Encefálicas Traumáticas/diagnóstico por imagem
9.
Int J Radiat Oncol Biol Phys ; 118(5): 1206-1216, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38244874

RESUMO

PURPOSE: Intracerebral radiation-induced contrast enhancement (RICE) can occur after photon as well as proton beam therapy (PBT). This study evaluated the incidence, characteristics, and risk factors of RICE after PBT delivered to, or in direct proximity to, the brain and its effect on health-related quality of life (HRQoL). METHODS AND MATERIALS: Four hundred twenty-one patients treated with pencil beam scanning PBT between 2017 and 2021 were included. Follow-up included clinical evaluation and contrast-enhanced magnetic resonance imaging at 3, 6, and 12 months after treatment completion and annually thereafter. RICE was graded according to Common Terminology Criteria for Adverse Events version 4, and HRQoL parameters were assessed via European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire (EORTC QLQ)-C30 questionnaires. RESULTS: The median follow-up was 24 months (range, 6-54), and median dose to 1% relative volume of noninvolved central nervous system (D1%CNS) was 54.3 Gy relative biologic effectiveness (RBE; range, 30-76 Gy RBE). The cumulative RICE incidence was 15% (n = 63), of which 10.5% (n = 44) were grade 1, 3.1% (n = 13) were grade 2, and 1.4% (n = 6) were grade 3. No grade 4 or 5 events were observed. Twenty-six of 63 RICE (41.3%) had resolved at the latest follow-up. The median onset after PBT and duration of RICE in patients in whom the lesions resolved were 11.8 and 9.0 months, respectively. On multivariable analysis, D1%CNS > 57.6 Gy RBE, previous in-field radiation, and diabetes mellitus were identified as significant risk factors for RICE development. Previous radiation was the only factor influencing the risk of symptomatic RICE. After PBT, general HRQoL parameters were not compromised. In a matched cohort analysis of 54/50 patients with and without RICE, no differences in global health score or functional and symptom scales were seen. CONCLUSIONS: The overall incidence of clinically relevant RICE after PBT is very low and has no significant negative effect on long-term patient QoL.


Assuntos
Terapia com Prótons , Lesões por Radiação , Neoplasias da Base do Crânio , Humanos , Terapia com Prótons/efeitos adversos , Terapia com Prótons/métodos , Neoplasias da Base do Crânio/diagnóstico por imagem , Neoplasias da Base do Crânio/radioterapia , Qualidade de Vida , Lesões por Radiação/patologia , Dosagem Radioterapêutica , Encéfalo/efeitos da radiação
10.
Front Neurol ; 15: 1374737, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38651109

RESUMO

Introduction: Assessing the treatment response of glioblastoma multiforme during immunotherapy (IT) is an open issue. Treatment response assessment maps (TRAMs) might help distinguish true tumor progression (TTP) and pseudoprogression (PsP) in this setting. Methods: We recruited 16 naïve glioblastoma patients enrolled in a phase II trial consisting of the Stupp protocol (a standardized treatment for glioblastoma involving combined radiotherapy and chemotherapy with temozolomide, followed by adjuvant temozolomide) plus IT with dendritic cells. Patients were followed up till progression or death; seven underwent a second surgery for suspected progression. Clinical, immunological, and MRI data were collected from all patients and histology in case of second surgery. Patients were classified as responders (progression-free survival, PFS > 12 months), and non-responders (PFS ≤ 12), HIGH-NK (natural killer cells, i.e., immunological responders), and LOW-NK (immunological non-responders) based on immune cell counts in peripheral blood. TRAMs differentiate contrast-enhancing lesions with different washout dynamics into hypothesized tumoral (conventionally blue-colored) vs. treatment-related (red-colored). Results: Using receiver operating characteristic (ROC) curves, a threshold of -0.066 in VBlue/VCE (volume of the blue portion of tumoral area/volume of contrast enhancement) variation between values obtained in the MRI performed before PsP/TTP and at TTP/PSP allowed to discriminate TTP from PsP with a sensitivity of 71.4% and a specificity of 100%. Among HIGH-NK patients, at month 6 there was a significant reduction compared to baseline and month 2 in median "blue" volumes. Discussion: In conclusion, in our pilot study TRAMs support the discrimination between tumoral and treatment-related enhancing features in immunological responders vs. non-responders, the distinction between PsP and TTP, and might provide surrogate markers of immunological response.

11.
Obesity (Silver Spring) ; 32(5): 1009-1022, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38410053

RESUMO

OBJECTIVE: High BMI, which poorly represents specific fat depots, is linked to poorer cognition and higher dementia risk, with different associations between sexes. This study examined associations of abdominal fat depots with cognition and brain volumes and whether sex modifies this association. METHODS: A total of 204 healthy middle-aged offspring of Alzheimer's dementia patients (mean age = 59.44, 60% females) underwent abdominal magnetic resonance imaging to quantify hepatic, pancreatic, visceral, and subcutaneous adipose tissue and to assess cognition and brain volumes. RESULTS: In the whole sample, higher hepatic fat percentage was associated with lower total gray matter volume (ß = -0.17, p < 0.01). Primarily in males, higher pancreatic fat percentage was associated with lower global cognition (males: ß = -0.27, p = 0.03; females: ß = 0.01, p = 0.93) executive function (males: ß = -0.27, p = 0.03; females: ß = 0.02, p = 0.87), episodic memory (males: ß = -0.28, p = 0.03; females: ß = 0.07, p = 0.48), and inferior frontal gyrus volume (males: ß = -0.28, p = 0.02; females: ß = 0.10, p = 0.33). Visceral and subcutaneous adipose tissue was inversely associated with middle frontal and superior frontal gyrus volumes in males and females. CONCLUSIONS: In middle-aged males at high Alzheimer's dementia risk, but not in females, higher pancreatic fat was associated with lower cognition and brain volumes. These findings suggest a potential sex-specific link between distinct abdominal fat with brain health.


Assuntos
Gordura Abdominal , Doença de Alzheimer , Encéfalo , Cognição , Imageamento por Ressonância Magnética , Humanos , Masculino , Doença de Alzheimer/diagnóstico por imagem , Feminino , Pessoa de Meia-Idade , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Gordura Abdominal/diagnóstico por imagem , Gordura Abdominal/patologia , Idoso , Índice de Massa Corporal , Fatores de Risco , Fatores Sexuais , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Pâncreas/patologia , Pâncreas/diagnóstico por imagem , Tamanho do Órgão
12.
Fluids Barriers CNS ; 20(1): 67, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37737197

RESUMO

BACKGROUND: Pharmacological treatment of CNS diseases is limited due to the presence of the blood-brain barrier (BBB). Recent years showed significant advancement in the field of CNS drug delivery enablers, with technologies such as MR-guided focused ultrasound reaching clinical trials. This have inspired researchers in the field to invent novel brain barriers opening (BBo) technologies that are required to be simple, fast, safe and efficient. One such technology, recently developed by us, is BDF (Barrier Disrupting Fields), based on low pulsed electric fields (L-PEFs) for opening the BBB in a controlled, safe, reversible and non-invasive manner. Here, we conducted an in vivo study to show that BDF is a feasible technology for delivering Doxorubicin (Doxo) into mice brain. Means for depicting BBBo levels were developed and applied for monitoring the treatment and predicting response. Overall, the goals of the presented study were to demonstrate the feasibility for delivering therapeutic Doxo doses into naïve and tumor-bearing mice brains and applying delayed-contrast MRI (DCM) for monitoring the levels of BBBo. METHODS: L-PEFs were applied using plate electrodes placed on the intact skull of naïve mice. L-PEFs/Sham mice were scanned immediately after the procedure by DCM ("MRI experiment"), or injected with Doxo and Trypan blue followed by delayed (4 h) perfusion and brain extraction ("Doxo experiment"). Doxo concentrations were measured in brain samples using confocal microscopy and compared to IC50 of Doxo in glioma cell lines in vitro. In order to map BBBo extent throughout the brain, pixel by pixel MR image analysis was performed using the DCM data. Finally, the efficacy of L-PEFs in combination with Doxo was tested in nude mice bearing intracranial human glioma tumors. RESULTS: Significant amount of Doxo was found in cortical regions of all L-PEFs-treated mice brains (0.50 ± 0.06 µg Doxo/gr brain) while in Sham brains, Doxo concentrations were below or on the verge of detection limit (0.03 ± 0.02 µg Doxo/gr brain). This concentration was x97 higher than IC50 of Doxo calculated in gl261 mouse glioma cells and x8 higher than IC50 of Doxo calculated in U87 human glioma cells. DCM analysis revealed significant BBBo levels in the cortical regions of L-PEFs-treated mice; the average volume of BBBo in the L-PEFs-treated mice was x29 higher than in the Sham group. The calculated BBBo levels dropped exponentially as a function of BBBo threshold, similarly to the electric fields distribution in the brain. Finally, combining non-invasive L-PEFs with Doxo significantly decreased brain tumors growth rates in nude mice. CONCLUSIONS: Our results demonstrate significant BBBo levels induced by extra-cranial L-PEFs, enabling efficient delivery of therapeutic Doxo doses into the brain and reducing tumor growth. As BBBo was undetectable by standard contrast-enhanced MRI, DCM was applied to generate maps depicting the BBBo levels throughout the brain. These findings suggest that BDF is a promising technology for efficient drug delivery into the brain with important implications for future treatment of brain cancer and additional CNS diseases.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Animais , Camundongos , Barreira Hematoencefálica , Camundongos Nus , Encéfalo/diagnóstico por imagem , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Glioma/diagnóstico por imagem , Glioma/tratamento farmacológico , Doxorrubicina/farmacologia
13.
Front Microbiol ; 14: 1296558, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38094629

RESUMO

Coronaviruses are the causative agents of several recent outbreaks, including the COVID-19 pandemic. One therapeutic approach is blocking viral binding to the host receptor. As binding largely depends on electrostatic interactions, we hypothesized possible inhibition of viral infection through application of electric fields, and tested the effectiveness of Tumor Treating Fields (TTFields), a clinically approved cancer treatment based on delivery of electric fields. In preclinical models, TTFields were found to inhibit coronavirus infection and replication, leading to lower viral secretion and higher cell survival, and to formation of progeny virions with lower infectivity, overall demonstrating antiviral activity. In a pilot clinical study (NCT04953234), TTFields therapy was safe for patients with severe COVID-19, also demonstrating preliminary effectiveness data, that correlated with higher device usage.

14.
Neuro Oncol ; 25(6): 1085-1097, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-36640127

RESUMO

BACKGROUND: MDNA55 is an interleukin 4 receptor (IL4R)-targeting toxin in development for recurrent GBM, a universally fatal disease. IL4R is overexpressed in GBM as well as cells of the tumor microenvironment. High expression of IL4R is associated with poor clinical outcomes. METHODS: MDNA55-05 is an open-label, single-arm phase IIb study of MDNA55 in recurrent GBM (rGBM) patients with an aggressive form of GBM (de novo GBM, IDH wild-type, and nonresectable at recurrence) on their 1st or 2nd recurrence. MDNA55 was administered intratumorally as a single dose treatment (dose range of 18 to 240 ug) using convection-enhanced delivery (CED) with up to 4 stereo-tactically placed catheters. It was co-infused with a contrast agent (Gd-DTPA, Magnevist®) to assess distribution in and around the tumor margins. The flow rate of each catheter did not exceed 10µL/min to ensure that the infusion duration did not exceed 48 h. The primary endpoint was mOS, with secondary endpoints determining the effects of IL4R status on mOS and PFS. RESULTS: MDNA55 showed an acceptable safety profile at doses up to 240 µg. In all evaluable patients (n = 44) mOS was 11.64 months (80% one-sided CI 8.62, 15.02) and OS-12 was 46%. A subgroup (n = 32) consisting of IL4R High and IL4R Low patients treated with high-dose MDNA55 (>180 ug) showed the best benefit with mOS of 15 months, OS-12 of 55%. Based on mRANO criteria, tumor control was observed in 81% (26/32), including those patients who exhibited pseudo-progression (15/26). CONCLUSIONS: MDNA55 demonstrated tumor control and promising survival and may benefit rGBM patients when treated at high-dose irrespective of IL4R expression level.Trial Registration: Clinicaltrials.gov NCT02858895.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Receptores de Interleucina-4/uso terapêutico , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/patologia , Microambiente Tumoral
15.
Brain Behav Immun ; 26(1): 159-69, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21925261

RESUMO

Accidental organophosphate poisoning resulting from environmental or occupational exposure, as well as the deliberate use of nerve agents on the battlefield or by terrorists, remain major threats for multi-casualty events, with no effective therapies yet available. Even transient exposure to organophosphorous compounds may lead to brain damage associated with microglial activation and to long-lasting neurological and psychological deficits. Regulation of the microglial response by adaptive immunity was previously shown to reduce the consequences of acute insult to the central nervous system (CNS). Here, we tested whether an immunization-based treatment that affects the properties of T regulatory cells (Tregs) can reduce brain damage following organophosphate intoxication, as a supplement to the standard antidotal protocol. Rats were intoxicated by acute exposure to the nerve agent soman, or the organophosphate pesticide, paraoxon, and after 24 h were treated with the immunomodulator, poly-YE. A single injection of poly-YE resulted in a significant increase in neuronal survival and tissue preservation. The beneficial effect of poly-YE treatment was associated with specific recruitment of CD4(+) T cells into the brain, reduced microglial activation, and an increase in the levels of brain derived neurotrophic factor (BDNF) in the piriform cortex. These results suggest therapeutic intervention with poly-YE as an immunomodulatory supplementary approach against consequences of organophosphate-induced brain damage.


Assuntos
Encefalopatias/induzido quimicamente , Encefalopatias/tratamento farmacológico , Substâncias para a Guerra Química/toxicidade , Inibidores da Colinesterase/toxicidade , Fatores Imunológicos/farmacologia , Fármacos Neuroprotetores/farmacologia , Compostos Organofosforados/toxicidade , Peptídeos/farmacologia , Animais , Encéfalo/patologia , Encefalopatias/patologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Linfócitos T CD4-Positivos/efeitos dos fármacos , Proliferação de Células , Citometria de Fluxo , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Imageamento por Ressonância Magnética , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Paraoxon/antagonistas & inibidores , Paraoxon/toxicidade , Ratos , Ratos Sprague-Dawley , Soman/antagonistas & inibidores , Soman/toxicidade , Linfócitos T/efeitos dos fármacos
16.
J Appl Toxicol ; 32(6): 409-16, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21861267

RESUMO

Organophosphate intoxication induces neural toxicity as demonstrated in histological analysis of poisoned animals. Diffusion-weighted magnetic resonance imaging (DWMRI) enables early noninvasive characterization of biological tissues based on their water diffusion characteristics. Our objectives were to study the application of MRI for assessment of paraoxon-induced brain damage and the efficacy of antidotal treatments. Seventy-six rats were poisoned with paraoxon followed by treatment with atropine and obidoxime. The rats were then divided into five treatment groups consisting of midazolam after 1 or 30 min, scopolamine after 1 or 30 min and a no anticonvulsant treatment group. Five untreated rats served as controls. Animals underwent MRI on days 1, 8, 15, 29 and 50 post poisoning. Histological evaluation was performed on representative rat brains. Acute DWMRI effects, such as enhancement of temporal brain regions, and chronic effects such as ventricular enlargement and brain atrophy, depicted on T2-weighted MRI, were significantly more prominent in late anticonvulsant treatment groups. There was no significant difference between the neuroprotective effects of midazolam and scopolamine as shown by DWMRI. Early MRI abnormalities were found to correlate significantly with histological analysis of samples obtained 15 days post treatment. In conclusion, our results demonstrate the feasibility of using DWMRI for depiction of early cytotoxic response to paraoxon and T2-weighted MRI for later changes, thus enabling assessment of early/late brain damage as well as treatment efficacy in rats. The ability to depict these changes early and noninvasively may be applied clinically in the acute phase of organophosphate poisoning.


Assuntos
Antídotos/farmacologia , Encefalopatias/induzido quimicamente , Encéfalo/efeitos dos fármacos , Inibidores da Colinesterase/toxicidade , Imageamento por Ressonância Magnética/métodos , Paraoxon/toxicidade , Animais , Atropina/farmacologia , Encéfalo/patologia , Encefalopatias/diagnóstico , Encefalopatias/metabolismo , Antagonistas Colinérgicos/farmacologia , Reativadores da Colinesterase/farmacologia , Moduladores GABAérgicos/farmacologia , Masculino , Midazolam/farmacologia , Cloreto de Obidoxima/farmacologia , Ratos , Ratos Sprague-Dawley , Escopolamina/farmacologia
17.
Sci Rep ; 12(1): 18078, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302937

RESUMO

Organophosphates (OPs) are inhibitors of acetylcholinesterase and have deleterious effects on the central nervous system. Clinical manifestations of OP poisoning include convulsions, which represent an underlying toxic neuro-pathological process, leading to permanent neuronal damage. This neurotoxicity is mediated through the cholinergic, GABAergic and glutamatergic (NMDA) systems. Pharmacological interventions in OP poisoning are designed to mitigate these specific neuro-pathological pathways, using anticholinergic drugs and GABAergic agents. Benactyzine is a combined anticholinergic, anti-NMDA compound. Based on previous development of novel GABA derivatives (such as prodrugs based on perphenazine for the treatment of schizophrenia and nortriptyline against neuropathic pain), we describe the synthesis and preliminary testing of a mutual prodrug ester of benactyzine and GABA. It is assumed that once the ester crosses the blood-brain-barrier it will undergo hydrolysis, releasing benactyzine and GABA, which are expected to act synergistically. The combined release of both compounds in the brain offers several advantages over the current OP poisoning treatment protocol: improved efficacy and safety profile (where the inhibitory properties of GABA are expected to counteract the anticholinergic cognitive adverse effects of benactyzine) and enhanced chemical stability compared to benactyzine alone. We present here preliminary results of animal studies, showing promising results with early gabactyzine administration.


Assuntos
Substâncias para a Guerra Química , Intoxicação por Organofosfatos , Pró-Fármacos , Animais , Benactizina , Antídotos/uso terapêutico , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Organofosfatos , Acetilcolinesterase/metabolismo , Antagonistas Colinérgicos/farmacologia , Ésteres , Ácido gama-Aminobutírico , Intoxicação por Organofosfatos/tratamento farmacológico , Inibidores da Colinesterase/farmacologia
18.
Retina ; 36(5): e40, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27078804
19.
Pharmaceutics ; 13(2)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513968

RESUMO

The blood-brain barrier (BBB) is a major hurdle for the treatment of central nervous system disorders, limiting passage of both small and large therapeutic agents from the blood stream into the brain. Thus, means for inducing BBB disruption (BBBd) are urgently needed. Here, we studied the application of low pulsed electrical fields (PEFs) for inducing BBBd in mice. Mice were treated by low PEFs using electrodes pressed against both sides of the skull (100-400 square 50 µs pulses at 4 Hz with different voltages). BBBd as a function of treatment parameters was evaluated using MRI-based treatment response assessment maps (TRAMs) and Evans blue extravasation. A 3D numerical model of the mouse brain and electrodes was constructed using finite element software, simulating the electric fields distribution in the brain and ensuring no significant temperature elevation. BBBd was demonstrated immediately after treatment and significant linear regressions were found between treatment parameters and the extent of BBBd. The maximal induced electric field in the mice brains, calculated by the numerical model, ranged between 62.4 and 187.2 V/cm for the minimal and maximal applied voltages. These results demonstrate the feasibility of inducing significant BBBd using non-invasive low PEFs, well below the threshold for electroporation.

20.
Biomaterials ; 276: 121039, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34352627

RESUMO

Titanium dioxide (TiO2) is a frequently used biomaterial, particularly in orthopedic and dental implants, and it is considered an inert and benign compound. This has resulted in toxicological scrutiny for TiO2 in the past decade, with numerus studies showing potential pathologic downstream effects. Herein we describe case report of a 77-year-old male with subacute CNS dysfunction, secondary to breakdown of a titanium-based carotid stent and leading to blood levels 1000 times higher (3 ppm) than the reported normal. We prospectively collected tissues adjacent to orthopedic implants and found a positive correlation between titanium concentration and time of implant in the body (r = 0.67, p < 0.02). Rats bearing titanium implants or intravascularly treated with TiO2 nanoparticles (TiNP) exhibited memory impairments. A human blood-brain barrier (BBB) in-vitro model exposed to TiNP showed paracellular leakiness, which was corroborated in-vivo with the decrease of key BBB transcripts in isolated blood vessels from hippocampi harvested from TiNP-treated mice. Titanium particles rapidly internalized into brain-like endothelial cells via caveolae-mediated endocytosis and macropinocytosis and induced pro-inflammatory reaction with increased expression of pro-inflammatory genes and proteins. Immune reaction was mediated partially by IL-1R and IL-6. In summary, we show that high levels of titanium accumulate in humans adjacent to orthopedic implants, and our in-vivo and in-vitro studies suggest it may be neurotoxic.


Assuntos
Nanopartículas , Titânio , Animais , Células Endoteliais , Humanos , Masculino , Camundongos , Estudos Prospectivos , Próteses e Implantes/efeitos adversos , Ratos , Titânio/toxicidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa