Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Immunity ; 47(5): 875-889.e10, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29166588

RESUMO

Migration of activated regulatory T (Treg) cells to inflamed tissue is crucial for their immune-modulatory function. While metabolic reprogramming during Treg cell differentiation has been extensively studied, the bioenergetics of Treg cell trafficking remains undefined. We have investigated the metabolic demands of migrating Treg cells in vitro and in vivo. We show that glycolysis was instrumental for their migration and was initiated by pro-migratory stimuli via a PI3K-mTORC2-mediated pathway culminating in induction of the enzyme glucokinase (GCK). Subsequently, GCK promoted cytoskeletal rearrangements by associating with actin. Treg cells lacking this pathway were functionally suppressive but failed to migrate to skin allografts and inhibit rejection. Similarly, human carriers of a loss-of-function GCK regulatory protein gene-leading to increased GCK activity-had reduced numbers of circulating Treg cells. These cells displayed enhanced migratory activity but similar suppressive function, while conventional T cells were unaffected. Thus, GCK-dependent glycolysis regulates Treg cell migration.


Assuntos
Glucoquinase/fisiologia , Glicólise , Linfócitos T Reguladores/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Antígenos CD28/fisiologia , Antígeno CTLA-4/fisiologia , Células Cultivadas , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/fisiologia , Alvo Mecanístico do Complexo 2 de Rapamicina/fisiologia , Camundongos , Camundongos Endogâmicos , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia
2.
Circulation ; 147(12): 956-972, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36484244

RESUMO

BACKGROUND: Placental heart development and embryonic heart development occur in parallel, and these organs have been proposed to exert reciprocal regulation during gestation. Poor placentation has been associated with congenital heart disease, an important cause of infant mortality. However, the mechanisms by which altered placental development can lead to congenital heart disease remain unresolved. METHODS: In this study, we use an in vivo neutrophil-driven placental inflammation model through antibody depletion of maternal circulating neutrophils at key stages during time-mated murine pregnancy: embryonic days 4.5 and 7.5. Pregnant mice were culled at embryonic day 14.5 to assess placental and embryonic heart development. A combination of flow cytometry, histology, and bulk RNA sequencing was used to assess placental immune cell composition and tissue architecture. We also used flow cytometry and single-cell sequencing to assess embryonic cardiac immune cells at embryonic day 14.5 and histology and gene analyses to investigate embryonic heart structure and development. In some cases, offspring were culled at postnatal days 5 and 28 to assess any postnatal cardiac changes in immune cells, structure, and cardiac function, as measured by echocardiography. RESULTS: In the present study, we show that neutrophil-driven placental inflammation leads to inadequate placental development and loss of barrier function. Consequently, placental inflammatory monocytes of maternal origin become capable of migration to the embryonic heart and alter the normal composition of resident cardiac macrophages and cardiac tissue structure. This cardiac impairment continues into postnatal life, hindering normal tissue architecture and function. Last, we show that tempering placental inflammation can prevent this fetal cardiac defect and is sufficient to promote normal cardiac function in postnatal life. CONCLUSIONS: Taken together, these observations provide a mechanistic paradigm whereby neutrophil-driven inflammation in pregnancy can preclude normal embryonic heart development as a direct consequence of poor placental development, which has major implications on cardiac function into adult life.


Assuntos
Cardiopatias Congênitas , Placenta , Gravidez , Feminino , Camundongos , Animais , Placenta/patologia , Placentação , Feto , Inflamação/patologia
3.
Immunity ; 43(3): 421-34, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26377896

RESUMO

The immune response requires major changes to metabolic processes, and indeed, energy metabolism and functional activation are fully integrated in immune cells to determine their ability to divide, differentiate, and carry out effector functions. Immune cell metabolism has therefore become an attractive target area for therapeutic purposes. A neglected aspect in the translation of immunometabolism is the critical connection between systemic and cellular metabolism. Here, we discuss the importance of understanding and manipulating the integration of systemic and immune cell metabolism through in-depth analysis of immune cell phenotype and function in human metabolic diseases and, in parallel, of the effects of conventional metabolic drugs on immune cell differentiation and function. We examine how the recent identification of selective metabolic programs operating in distinct immune cell subsets and functions has the potential to deliver tools for cell- and function-specific immunometabolic targeting.


Assuntos
Metabolismo Energético/imunologia , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Redes e Vias Metabólicas/imunologia , Animais , Metabolismo Energético/genética , Humanos , Sistema Imunitário/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Doenças Metabólicas/genética , Doenças Metabólicas/imunologia , Doenças Metabólicas/metabolismo , Redes e Vias Metabólicas/genética , Modelos Imunológicos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
4.
Immunity ; 42(6): 1087-99, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26070483

RESUMO

Effector-T-cell-mediated immunity depends on the efficient localization of antigen-primed lymphocytes to antigen-rich non-lymphoid tissue, which is facilitated by the expression of a unique set of "homing" receptors acquired by memory T cells. We report that engagement of the hepatocyte growth factor (HGF) receptor c-Met by heart-produced HGF during priming in the lymph nodes instructs T cell cardiotropism, which was associated with a specialized homing "signature" (c-Met(+)CCR4(+)CXCR3(+)). c-Met signals facilitated T cell recruitment to the heart via the chemokine receptor CCR5 by inducing autocrine CCR5 ligand release. c-Met triggering was sufficient to support cardiotropic T cell recirculation, while CCR4 and CXCR3 sustained recruitment during heart inflammation. Transient pharmacological blockade of c-Met during T cell priming led to enhanced survival of heart, but not skin, allografts associated with impaired localization of alloreactive T cells to heart grafts. These findings suggest c-Met as a target for development of organ-selective immunosuppressive therapies.


Assuntos
Rejeição de Enxerto/prevenção & controle , Transplante de Coração , Coração/fisiologia , Fator de Crescimento de Hepatócito/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Linfócitos T/fisiologia , Animais , Comunicação Autócrina , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Células Cultivadas , Rejeição de Enxerto/etiologia , Rejeição de Enxerto/genética , Humanos , Memória Imunológica , Indóis/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/genética , Camundongos , Camundongos SCID , Terapia de Alvo Molecular , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/genética , RNA Interferente Pequeno/genética , Receptores CCR5/metabolismo , Receptores de Quimiocinas/metabolismo , Receptores de Retorno de Linfócitos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Sulfonas/farmacologia , Linfócitos T/efeitos dos fármacos
5.
Circulation ; 146(25): 1930-1945, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36417924

RESUMO

BACKGROUND: Autoimmunity is increasingly recognized as a key contributing factor in heart muscle diseases. The functional features of cardiac autoimmunity in humans remain undefined because of the challenge of studying immune responses in situ. We previously described a subset of c-mesenchymal epithelial transition factor (c-Met)-expressing (c-Met+) memory T lymphocytes that preferentially migrate to cardiac tissue in mice and humans. METHODS: In-depth phenotyping of peripheral blood T cells, including c-Met+ T cells, was undertaken in groups of patients with inflammatory and noninflammatory cardiomyopathies, patients with noncardiac autoimmunity, and healthy controls. Validation studies were carried out using human cardiac tissue and in an experimental model of cardiac inflammation. RESULTS: We show that c-Met+ T cells are selectively increased in the circulation and in the myocardium of patients with inflammatory cardiomyopathies. The phenotype and function of c-Met+ T cells are distinct from those of c-Met-negative (c-Met-) T cells, including preferential proliferation to cardiac myosin and coproduction of multiple cytokines (interleukin-4, interleukin-17, and interleukin-22). Furthermore, circulating c-Met+ T cell subpopulations in different heart muscle diseases identify distinct and overlapping mechanisms of heart inflammation. In experimental autoimmune myocarditis, elevations in autoantigen-specific c-Met+ T cells in peripheral blood mark the loss of immune tolerance to the heart. Disease development can be halted by pharmacologic c-Met inhibition, indicating a causative role for c-Met+ T cells. CONCLUSIONS: Our study demonstrates that the detection of circulating c-Met+ T cells may have use in the diagnosis and monitoring of adaptive cardiac inflammation and definition of new targets for therapeutic intervention when cardiac autoimmunity causes or contributes to progressive cardiac injury.


Assuntos
Doenças Autoimunes , Cardiomiopatias , Miocardite , Humanos , Camundongos , Animais , Autoimunidade , Células T de Memória , Miocardite/etiologia , Miocárdio , Cardiomiopatias/complicações , Miosinas Cardíacas , Inflamação/complicações
8.
Proc Natl Acad Sci U S A ; 113(52): E8415-E8424, 2016 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-27956610

RESUMO

Although neutrophils are known to be fundamental in controlling innate immune responses, their role in regulating adaptive immunity is just starting to be appreciated. We report that human neutrophils exposed to pregnancy hormones progesterone and estriol promote the establishment of maternal tolerance through the induction of a population of CD4+ T cells displaying a GARP+CD127loFOXP3+ phenotype following antigen activation. Neutrophil-induced T (niT) cells produce IL-10, IL-17, and VEGF and promote vessel growth in vitro. Neutrophil depletion during murine pregnancy leads to abnormal development of the fetal-maternal unit and reduced empbryo development, with placental architecture displaying poor trophoblast invasion and spiral artery development in the maternal decidua, accompanied by significantly attenuated niT cell numbers in draining lymph nodes. Using CD45 congenic cells, we show that induction of niT cells and their regulatory function occurs via transfer of apoptotic neutrophil-derived proteins, including forkhead box protein 1 (FOXO1), to T cells. Unlike in women with healthy pregnancies, neutrophils from blood and placental samples of preeclamptic women fail to induce niT cells as a direct consequence of their inability to transfer FOXO1 to T cells. Finally, neutrophil-selective FOXO1 knockdown leads to defective placentation and compromised embryo development, similar to that resulting from neutrophil depletion. These data define a nonredundant function of neutrophil-T cell interactions in the regulation of vascularization at the maternal-fetal interface.


Assuntos
Neovascularização Fisiológica , Neutrófilos/citologia , Placenta/fisiologia , Linfócitos T Reguladores/citologia , Adulto , Animais , Decídua/fisiologia , Feminino , Proteína Forkhead Box O1/fisiologia , Técnicas de Silenciamento de Genes , Voluntários Saudáveis , Humanos , Sistema Imunitário , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fenótipo , Gravidez , Adulto Jovem
9.
PLoS Biol ; 13(7): e1002202, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26181372

RESUMO

Lactate has long been considered a "waste" by-product of cell metabolism, and it accumulates at sites of inflammation. Recent findings have identified lactate as an active metabolite in cell signalling, although its effects on immune cells during inflammation are largely unexplored. Here we ask whether lactate is responsible for T cells remaining entrapped in inflammatory sites, where they perpetuate the chronic inflammatory process. We show that lactate accumulates in the synovia of rheumatoid arthritis patients. Extracellular sodium lactate and lactic acid inhibit the motility of CD4+ and CD8+ T cells, respectively. This selective control of T cell motility is mediated via subtype-specific transporters (Slc5a12 and Slc16a1) that we find selectively expressed by CD4+ and CD8+ subsets, respectively. We further show both in vitro and in vivo that the sodium lactate-mediated inhibition of CD4+ T cell motility is due to an interference with glycolysis activated upon engagement of the chemokine receptor CXCR3 with the chemokine CXCL10. In contrast, we find the lactic acid effect on CD8+ T cell motility to be independent of glycolysis control. In CD4+ T helper cells, sodium lactate also induces a switch towards the Th17 subset that produces large amounts of the proinflammatory cytokine IL-17, whereas in CD8+ T cells, lactic acid causes the loss of their cytolytic function. We further show that the expression of lactate transporters correlates with the clinical T cell score in the synovia of rheumatoid arthritis patients. Finally, pharmacological or antibody-mediated blockade of subtype-specific lactate transporters on T cells results in their release from the inflammatory site in an in vivo model of peritonitis. By establishing a novel role of lactate in control of proinflammatory T cell motility and effector functions, our findings provide a potential molecular mechanism for T cell entrapment and functional changes in inflammatory sites that drive chronic inflammation and offer targeted therapeutic interventions for the treatment of chronic inflammatory disorders.


Assuntos
Linfócitos T CD4-Positivos/fisiologia , Inflamação/metabolismo , Ácido Láctico/metabolismo , Animais , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Movimento Celular , Quimiocinas/metabolismo , Feminino , Glicólise , Humanos , Inflamação/imunologia , Camundongos Endogâmicos C57BL , Líquido Sinovial/metabolismo
10.
Proc Natl Acad Sci U S A ; 112(43): E5815-24, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26392551

RESUMO

Constitutive resistance to cell death induced by inflammatory stimuli activating the extrinsic pathway of apoptosis is a key feature of vascular endothelial cells (ECs). Although this property is central to the maintenance of the endothelial barrier during inflammation, the molecular mechanisms of EC protection from cell-extrinsic, proapoptotic stimuli have not been investigated. We show that the Ig-family member CD31, which is expressed by endothelial but not epithelial cells, is necessary to prevent EC death induced by TNF-α and cytotoxic T lymphocytes in vitro. Combined quantitative RT-PCR array and biochemical analysis show that, upon the engagement of the TNF receptor with TNF-α on ECs, CD31 becomes activated and, in turn, counteracts the proapoptotic transcriptional program induced by TNF-α via activation of the Erk/Akt pathway. Specifically, Akt activation by CD31 signals prevents the localization of the forkhead transcription factor FoxO3 to the nucleus, thus inhibiting transcription of the proapoptotic genes CD95/Fas and caspase 7 and de-repressing the expression of the antiapoptotic gene cFlar. Both CD31 intracellular immunoreceptor tyrosine-based inhibition motifs are required for its prosurvival function. In vivo, CD31 gene transfer is sufficient to recapitulate the cytoprotective mechanisms in CD31(-) pancreatic ß cells, which become resistant to immune-mediated rejection when grafted in fully allogeneic recipients.


Assuntos
Endotélio Vascular/imunologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/imunologia , Animais , Camundongos , Camundongos Knockout , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Linfócitos T Citotóxicos/imunologia , Fator de Necrose Tumoral alfa/fisiologia
11.
Cell Mol Life Sci ; 73(16): 3009-33, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27038487

RESUMO

Protective immunity relies upon T cell differentiation and subsequent migration to target tissues. Similarly, immune homeostasis requires the localization of regulatory T cells (Tregs) to the sites where immunity takes place. While naïve T lymphocytes recirculate predominantly in secondary lymphoid tissue, primed T cells and activated Tregs must traffic to the antigen rich non-lymphoid tissue to exert effector and regulatory responses, respectively. Following priming in draining lymph nodes, T cells acquire the 'homing receptors' to facilitate their access to specific tissues and organs. An additional level of topographic specificity is provided by T cells receptor recognition of antigen displayed by the endothelium. Furthermore, co-stimulatory signals (such as those induced by CD28) have been shown not only to regulate T cell activation and differentiation, but also to orchestrate the anatomy of the ensuing T cell response. We here review the molecular mechanisms supporting trafficking of both effector and regulatory T cells to specific antigen-rich tissues.


Assuntos
Linfócitos T/citologia , Linfócitos T/imunologia , Animais , Antígenos/imunologia , Diferenciação Celular , Movimento Celular , Humanos , Memória Imunológica , Ativação Linfocitária , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia
12.
J Cell Sci ; 126(Pt 11): 2343-52, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23761922

RESUMO

Although it is expressed by all leukocytes, including T-, B-lymphocytes and dendritic cells, the immunoglobulin-like receptor CD31 is generally regarded by immunologists as a marker of endothelial cell lineage that lacks an established functional role in adaptive immunity. This perception has recently been challenged by studies that reveal a key role for this molecule in the regulation of T-cell homeostasis, effector function and trafficking. The complexity of the biological functions of CD31 results from the integration of its adhesive and signaling functions in both the immune and vascular systems. Signaling by means of CD31 is induced by homophilic engagement during the interactions of immune cells and is mediated by phosphatase recruitment or activation through immunoreceptor tyrosine inhibitory motifs (ITIMs) that are located in its cytoplasmic tail. Loss of CD31 function is associated with excessive immunoreactivity and susceptibility to cytotoxic killing. Here, we discuss recent findings that have brought to light a non-redundant, complex role for this molecule in the regulation of T-cell-mediated immune responses, with large impact on our understanding of immunity in health and disease.


Assuntos
Movimento Celular/imunologia , Imunidade Celular , Molécula-1 de Adesão Celular Endotelial a Plaquetas/imunologia , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Animais , Adesão Celular/genética , Adesão Celular/imunologia , Movimento Celular/genética , Humanos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Transdução de Sinais/genética
13.
J Immunol ; 189(8): 4104-11, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22966083

RESUMO

The role of CD31, an Ig-like molecule expressed by leukocytes and endothelial cells (ECs), in the regulation of T lymphocyte trafficking remains contentious. Using CD31-deficient mice, we show that CD31 regulates both constitutive and inflammation-induced T cell migration in vivo. Specifically, T cell:EC interactions mediated by CD31 molecules are required for efficient localization of naive T lymphocytes to secondary lymphoid tissue and constitutive recirculation of primed T cells to nonlymphoid tissues. In inflammatory conditions, T cell:EC CD31-mediated interactions facilitate T cell recruitment to Ag-rich sites. However, endothelial CD31 also provides a gate-keeping mechanism to limit the rate of Ag-driven T cell extravasation. This event contributes to the formation of Ag-specific effector T cell infiltrates and is induced by recognition of Ag on the endothelium. In this context, CD31 engagement is required for restoring endothelial continuity, which is temporarily lost upon MHC molecule ligation by migrating cognate T cells. We propose that integrated adhesive and signaling functions of CD31 molecules exert a complex regulation of T cell trafficking, a process that is differentially adapted depending on cell-specific expression, the presence of inflammatory conditions and the molecular mechanism facilitating T cell extravasation.


Assuntos
Molécula-1 de Adesão Celular Endotelial a Plaquetas/fisiologia , Linfócitos T/citologia , Linfócitos T/imunologia , Migração Transendotelial e Transepitelial/imunologia , Animais , Comunicação Celular/imunologia , Células Cultivadas , Endotélio Vascular/citologia , Endotélio Vascular/imunologia , Endotélio Vascular/metabolismo , Feminino , Tecido Linfoide/citologia , Tecido Linfoide/imunologia , Masculino , Camundongos , Técnicas de Cultura de Órgãos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/administração & dosagem , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Linfócitos T/metabolismo , Migração Transendotelial e Transepitelial/genética
14.
Br J Haematol ; 162(6): 808-18, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23855835

RESUMO

Pre-transplant conditioning regimens play a major role in triggering graft-versus-host disease (GVHD). This study investigated the effect of irradiation on donor T cell trafficking to lymphoid and non-lymphoid tissues by comparing the migration of carboxy-fluorescein diacetate succinimidyl ester-labelled, naïve donor T lymphocytes in vivo in irradiated and non-irradiated syngeneic mice recipients. Recruitment of adoptively transferred naïve T cells to secondary lymphoid organs was increased in irradiated mice and naïve T cells also aberrantly localized to non-lymphoid tissues. Irradiation also induced aberrant effector memory T cell migration into lymph nodes and their localization to homing-privileged non-lymphoid sites, such as the gut. The presence of a minor histocompatibility mismatch further enhanced the aberrant accumulation of T cells in both lymphoid and non-lymphoid tissue, whilst their migratory pattern was not modified as compared to fully matched irradiated recipients. These effects correlated with decreased permeability of, and the secretion of chemotactic factors by the endothelium. Our findings are consistent with the possibility that excessive, dysregulated extravasation of T cells induced by irradiation promotes the development of GVHD.


Assuntos
Doença Enxerto-Hospedeiro/imunologia , Linfócitos T/imunologia , Linfócitos T/transplante , Condicionamento Pré-Transplante/métodos , Irradiação Corporal Total/métodos , Animais , Quimiocinas/imunologia , Quimiotaxia/imunologia , Quimiotaxia/efeitos da radiação , Feminino , Imunidade Celular/imunologia , Imunidade Celular/efeitos da radiação , Imunoterapia Adotiva/métodos , Tecido Linfoide/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
15.
Proc Natl Acad Sci U S A ; 107(45): 19461-6, 2010 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-20978210

RESUMO

CD31 is an Ig-like molecule expressed by leukocytes and endothelial cells with an established role in the regulation of leukocyte trafficking. Despite genetic deletion of CD31 being associated with exacerbation of T cell-mediated autoimmunity, the contribution of this molecule to T-cell responses is largely unknown. Here we report that tumor and allograft rejection are significantly enhanced in CD31-deficient mice, which are also resistant to tolerance induction. We propose that these effects are dependent on an as yet unrecognized role for CD31-mediated homophilic interactions between T cells and antigen-presenting cells (APCs) during priming. We show that loss of CD31 interactions leads to enhanced primary clonal expansion, increased killing capacity, and diminished regulatory functions by T cells. Immunomodulation by CD31 signals correlates with a partial inhibition of proximal T-cell receptor (TCR) signaling, specifically Zap-70 phosphorylation. However, CD31-deficient mice do not develop autoimmunity due to increased T-cell death following activation, and we show that CD31 triggering induces Erk-mediated prosurvival activity in T cells either in conjunction with TCR signaling or autonomously. We conclude that CD31 functions as a nonredundant comodulator of T-cell responses, which specializes in sizing the ensuing immune response by setting the threshold for T-cell activation and tolerance, while preventing memory T-cell death.


Assuntos
Tolerância Imunológica , Molécula-1 de Adesão Celular Endotelial a Plaquetas/imunologia , Linfócitos T/imunologia , Animais , Sobrevivência Celular , Células Clonais , Citotoxicidade Imunológica , Genes de Imunoglobulinas , Memória Imunológica , Ativação Linfocitária/imunologia , Camundongos , Camundongos Knockout , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética
16.
Nat Metab ; 5(11): 1969-1985, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37884694

RESUMO

T cell activation is associated with a profound and rapid metabolic response to meet increased energy demands for cell division, differentiation and development of effector function. Glucose uptake and engagement of the glycolytic pathway are major checkpoints for this event. Here we show that the low-affinity, concentration-dependent glucose transporter 2 (Glut2) regulates the development of CD8+ T cell effector responses in mice by promoting glucose uptake, glycolysis and glucose storage. Expression of Glut2 is modulated by environmental factors including glucose and oxygen availability and extracellular acidification. Glut2 is highly expressed by circulating, recently primed T cells, allowing efficient glucose uptake and storage. In glucose-deprived inflammatory environments, Glut2 becomes downregulated, thus preventing passive loss of intracellular glucose. Mechanistically, Glut2 expression is regulated by a combination of molecular interactions involving hypoxia-inducible factor-1 alpha, galectin-9 and stomatin. Finally, we show that human T cells also rely on this glucose transporter, thus providing a potential target for therapeutic immunomodulation.


Assuntos
Proteínas Facilitadoras de Transporte de Glucose , Glucose , Camundongos , Humanos , Animais , Glucose/metabolismo , Transporte Biológico/fisiologia , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Diferenciação Celular , Linfócitos T CD8-Positivos/metabolismo
17.
Immunology ; 136(4): 363-9, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22384794

RESUMO

To engage in proliferation, cells need to increase their biomass and replicate their genome. This process presents a substantial bioenergetic challenge: proliferating cells must increase ATP production and acquire or synthesize raw materials, including lipids, proteins and nucleic acids. To do so, proliferating cells actively reprogramme their intracellular metabolism from catabolic mitochondrial oxidative phosphorylation (OXPHOS) to glycolysis and other anabolic pathways. This metabolic reprogramming, which directs nutrient uptake and metabolism during cell activation and proliferation, is under the control of specific signal transduction pathways. The underlying molecular mechanisms of cell metabolism reprogramming and their relevance to physiology and disease are currently under intense study. Several reports have uncovered the mechanisms of metabolic reprogramming that drive high rates of cell proliferation in cancer. Some recent studies have elucidated the physiological role of metabolic reprogramming during T-cell activation, differentiation and trafficking, which are potentially relevant to inflammatory disorders. This review describes the impact of metabolic reprogramming on the pathogenesis of cancer and the physiology of T-cell-mediated immune responses, with an emphasis on the phosphatidyl inositol 3-kinase-serine/threonine kinase-mammalian target of rapamycin pathway and the recently discovered metabolic processes regulated by nuclear factor-κB. These discoveries will hopefully translate into a better understanding of the role of metabolic reprogramming as a key regulator of T-cell-mediated immune responses and offer novel, immune-based therapeutic approaches.


Assuntos
Glicólise/fisiologia , Ativação Linfocitária , Linfócitos T/imunologia , Linfócitos T/metabolismo , Diferenciação Celular , Movimento Celular , Proliferação de Células , Ciclo do Ácido Cítrico/fisiologia , Metabolismo Energético , Humanos , Imunidade Celular , NF-kappa B/metabolismo , Fosforilação Oxidativa , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
18.
Nat Cell Biol ; 7(8): 808-16, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16025105

RESUMO

Phosphatidylserine (PS) exposure is normally associated with apoptosis and the removal of dying cells. We observed that PS is exposed constitutively at high levels on T lymphocytes that express low levels of the transmembrane tyrosine phosphatase CD45RB. CD45 was shown to be a negative regulator of PS translocation in response to various signals, including activation of the ATP receptor P2X(7). Changes in PS distribution were shown to modulate several membrane activities: Ca(2+) and Na(+) uptake through the P2X(7) cation channel itself; P2X(7)-stimulated shedding of the homing receptor CD62L; and reversal of activity of the multidrug transporter P-glycoprotein. The data identify a role for PS distribution changes in signal transduction, rapidly modulating the activities of several membrane proteins. This seems to be an all-or-none effect, coordinating the activity of most or all the molecules of a target protein in each cell. The data also suggest a new approach to circumventing multidrug resistance.


Assuntos
Membrana Celular/metabolismo , Antígenos Comuns de Leucócito/fisiologia , Linfócitos/metabolismo , Fosfatidilserinas/metabolismo , Receptores Purinérgicos P2/fisiologia , Transdução de Sinais/fisiologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/efeitos dos fármacos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/fisiologia , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Animais , Anexina A5/metabolismo , Apoptose/fisiologia , Transporte Biológico/efeitos dos fármacos , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/fisiologia , Cálcio/metabolismo , Membrana Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Sobrevivência Celular/fisiologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Canais Iônicos/efeitos dos fármacos , Canais Iônicos/metabolismo , Canais Iônicos/fisiologia , Selectina L/metabolismo , Antígenos Comuns de Leucócito/genética , Antígenos Comuns de Leucócito/metabolismo , Linfócitos/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Knockout , Camundongos Transgênicos , Modelos Biológicos , Paclitaxel/farmacocinética , Agonistas do Receptor Purinérgico P2 , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2X7 , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/fisiologia
19.
J Cell Biol ; 221(11)2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36129440

RESUMO

Activation of T cells relies on the availability of intracellular cholesterol for an effective response after stimulation. We investigated the contribution of cholesterol derived from extracellular uptake by the low-density lipoprotein (LDL) receptor in the immunometabolic response of T cells. By combining proteomics, gene expression profiling, and immunophenotyping, we described a unique role for cholesterol provided by the LDLR pathway in CD8+ T cell activation. mRNA and protein expression of LDLR was significantly increased in activated CD8+ compared to CD4+ WT T cells, and this resulted in a significant reduction of proliferation and cytokine production (IFNγ, Granzyme B, and Perforin) of CD8+ but not CD4+ T cells from Ldlr -/- mice after in vitro and in vivo stimulation. This effect was the consequence of altered cholesterol routing to the lysosome resulting in a lower mTORC1 activation. Similarly, CD8+ T cells from humans affected by familial hypercholesterolemia (FH) carrying a mutation on the LDLR gene showed reduced activation after an immune challenge.


Assuntos
Linfócitos T CD8-Positivos , Colesterol , Ativação Linfocitária , Alvo Mecanístico do Complexo 1 de Rapamicina , Receptores de LDL , Animais , Linfócitos T CD8-Positivos/metabolismo , Colesterol/metabolismo , Citocinas/metabolismo , Granzimas/metabolismo , Humanos , Hiperlipoproteinemia Tipo II , Interferon gama/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Knockout , Perforina , RNA Mensageiro/genética , Receptores de LDL/genética , Receptores de LDL/metabolismo
20.
JCI Insight ; 7(10)2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35472029

RESUMO

Voltage-gated hydrogen channel 1 (Hvcn1) is a voltage-gated proton channel, which reduces cytosol acidification and facilitates the production of ROS. The increased expression of this channel in some cancers has led to proposing Hvcn1 antagonists as potential therapeutics. While its role in most leukocytes has been studied in depth, the function of Hvcn1 in T cells remains poorly defined. We show that Hvcn1 plays a nonredundant role in protecting naive T cells from intracellular acidification during priming. Despite sharing overall functional impairment in vivo and in vitro, Hvcn1-deficient CD4+ and CD8+ T cells display profound differences during the transition from naive to primed T cells, including in the preservation of T cell receptor (TCR) signaling, cellular division, and death. These selective features result, at least in part, from a substantially different metabolic response to intracellular acidification associated with priming. While Hvcn1-deficient naive CD4+ T cells reprogram to rescue the glycolytic pathway, naive CD8+ T cells, which express high levels of this channel in the mitochondria, respond by metabolically compensating mitochondrial dysfunction, at least in part via AMPK activation. These observations imply heterogeneity between adaptation of naive CD4+ and CD8+ T cells to intracellular acidification during activation.


Assuntos
Hidrogênio , Prótons , Concentração de Íons de Hidrogênio , Contagem de Linfócitos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa