RESUMO
Ferrierite zeolites with nanosized crystals and external surface areas higher than 250â m2 g-1 have been prepared at relatively low synthesis temperature (120 °C) by means of the collaborative effect of two organic structure directing agents (OSDA). In this way, hierarchical porosity is achieved without the use of post-synthesis treatments that usually involve leaching of Tâ atoms and solid loss. Adjusting the synthesis conditions it is possible to decrease the crystallite size in the directions of the 8- and 10-ring channels, [010] and [001] respectively, reducing their average pore length to 10-30â nm and increasing the number of pores accessible. The small crystal size of the nano-ferrierites results in an improved accessibility of reactants to the catalytic active centers and enhanced product diffusion, leading to higher conversion and selectivity with lower deactivation rates for the oligomerization of 1-pentene into longer-chain olefins.
RESUMO
A two-dimensional zeolite with the topology of MWW sheets has been obtained by direct synthesis with a combination of two organic structure-directing agents. The resultant material consists of approximately 70% single and double layers and displays a well-structured external surface area of about 300â m(2) g(-1). The delaminated zeolite prepared by means of this single-step synthetic route has a high delamination degree, and the structural integrity of the MWW layers is well preserved. The new zeolite material displayed excellent activity, selectivity, and stability when used as a catalyst for the alkylation of benzene with propylene and found to be superior to the catalysts that are currently used for producing cumene.