Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 143(39): 15960-15974, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34546737

RESUMO

The life-sustaining reduction of N2 to NH3 is thermoneutral yet kinetically challenged by high-energy intermediates such as N2H2. Exploring intramolecular H-bonding as a potential strategy to stabilize diazene intermediates, we employ a series of [xHetTpCu]2(µ-N2H2) complexes that exhibit H-bonding between pendant aromatic N-heterocycles (xHet) such as pyridine and a bridging trans-N2H2 ligand at copper(I) centers. X-ray crystallography and IR spectroscopy clearly reveal H-bonding in [pyMeTpCu]2(µ-N2H2) while low-temperature 1H NMR studies coupled with DFT analysis reveals a dynamic equilibrium between two closely related, symmetric H-bonded structural motifs. Importantly, the xHet pendant negligibly influences the electronic structure of xHetTpCuI centers in xHetTpCu(CNAr2,6-Me2) complexes that lack H-bonding as judged by nearly indistinguishable ν(CN) frequencies (2113-2117 cm-1). Nonetheless, H-bonding in the corresponding [xHetTpCu]2(µ-N2H2) complexes results in marked changes in ν(NN) (1398-1419 cm-1) revealed through resonance Raman studies. Due to the closely matched N-H BDEs of N2H2 and the pyH0 cation radical, the aromatic N-heterocyclic pendants may encourage partial H-atom transfer (HAT) from N2H2 to xHet through redox-non-innocent H-bonding in [xHetTpCu]2(µ-N2H2). DFT studies reveal modest thermodynamic barriers for concerted transfer of both H-atoms of coordinated N2H2 to the xHet pendants to generate tautomeric [xHetHTpCu]2(µ-N2) complexes, identifying metal-assisted concerted dual HAT as a thermodynamically favorable pathway for N2/N2H2 interconversion.

2.
J Am Chem Soc ; 140(32): 10250-10262, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30016865

RESUMO

Well-defined molecular systems for catalytic hydrogen production that are robust, easily generated, and active under mild aqueous conditions remain underdeveloped. Nickel-substituted rubredoxin (NiRd) is one such system, featuring a tetrathiolate coordination environment around the nickel center that is identical to the native [NiFe] hydrogenases and demonstrating hydrogenase-like proton reduction activity. However, until now, the catalytic mechanism has remained elusive. In this work, we have combined quantitative protein film electrochemistry with optical and vibrational spectroscopy, density functional theory calculations, and molecular dynamics simulations to interrogate the mechanism of H2 evolution by NiRd. Proton-coupled electron transfer is found to be essential for catalysis. The coordinating thiolate ligands serve as the sites of protonation, a role that remains debated in the native [NiFe] hydrogenases, with reduction occurring at the nickel center following protonation. The rate-determining step is suggested to be intramolecular proton transfer via thiol inversion to generate a NiIII-hydride species. NiRd catalysis is found to be completely insensitive to the presence of oxygen, another advantage over the native [NiFe] hydrogenase enzymes, with potential implications for membrane-less fuel cells and aerobic hydrogen evolution. Targeted mutations around the metal center are seen to increase the activity and perturb the rate-determining process, highlighting the importance of the outer coordination sphere. Collectively, these results indicate that NiRd evolves H2 through a mechanism similar to that of the [NiFe] hydrogenases, suggesting a role for thiolate protonation in the native enzyme and guiding rational optimization of the NiRd system.


Assuntos
Hidrogenase/química , Hidrogenase/metabolismo , Níquel/química , Rubredoxinas/química , Sequência de Aminoácidos , Concentração de Íons de Hidrogênio , Isótopos , Modelos Moleculares , Mutação , Conformação Proteica
3.
Inorg Chem ; 56(7): 3926-3938, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28323426

RESUMO

Nickel-substituted rubredoxin (NiRd) is a functional enzyme mimic of hydrogenase, highly active for electrocatalytic and solution-phase hydrogen generation. Spectroscopic methods can provide valuable insight into the catalytic mechanism, provided the appropriate technique is used. In this study, we have employed multiwavelength resonance Raman spectroscopy coupled with DFT calculations on an extended active-site model of NiRd to probe the electronic and geometric structures of the resting state of this system. Excellent agreement between experiment and theory is observed, allowing normal mode assignments to be made on the basis of frequency and intensity analyses. Both metal-ligand and ligand-centered vibrational modes are enhanced in the resonance Raman spectra. The latter provide information about the hydrogen bonding network and structural distortions due to perturbations in the secondary coordination sphere. To reproduce the resonance enhancement patterns seen for high-frequency vibrational modes, the secondary coordination sphere must be included in the computational model. The structure and reduction potential of the NiIIIRd state have also been investigated both experimentally and computationally. This work begins to establish a foundation for computational resonance Raman spectroscopy to serve in a predictive fashion for investigating catalytic intermediates of NiRd.


Assuntos
Níquel/química , Rubredoxinas/química , Domínio Catalítico , Computação Matemática , Modelos Químicos , Teoria Quântica , Análise Espectral Raman
4.
Toxicol Sci ; 174(1): 133-146, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31879758

RESUMO

Chemical warfare nerve agents (CWNAs) present a global threat to both military and civilian populations. The acute toxicity of CWNAs stems from their ability to effectively inhibit acetylcholinesterase (AChE). This inhibition can lead to uncontrolled cholinergic cellular signaling, resulting in cholinergic crisis and, ultimately, death. Although the current FDA-approved standard of care is moderately effective when administered early, development of novel treatment strategies is necessary. Butyrylcholinesterase (BChE) is an enzyme which displays a high degree of structural homology to AChE. Unlike AChE, the roles of BChE are uncertain and possibilities are still being explored. However, BChE appears to primarily serve as a bioscavenger of toxic esters due to its ability to accommodate a wide variety of substrates within its active site. Like AChE, BChE is also readily inhibited by CWNAs. Due to its high affinity for binding CWNAs, and that null-BChE yields no apparent health effects, exogenous BChE has been explored as a candidate therapeutic for CWNA intoxication. Despite years of research, minimal strides have been made to develop a catalytic bioscavenger. Furthermore, BChE is only in early clinical trials as a stoichiometric bioscavenger of CWNAs, and large quantities must be administered to treat CWNA toxicity. Here, we describe previously unidentified mutations to residues within and adjacent to the acyl binding pocket (positions 282-285 were mutagenized from YGTP to NHML) of BChE that confer catalytic degradation of the CWNA, sarin. These mutations, along with corresponding future efforts, may finally lead to a novel therapeutic to combat CWNA intoxication.


Assuntos
Butirilcolinesterase/metabolismo , Substâncias para a Guerra Química/metabolismo , Inibidores da Colinesterase/metabolismo , Sarina/metabolismo , Sítios de Ligação , Butirilcolinesterase/genética , Catálise , Células HEK293 , Humanos , Mutação , Ligação Proteica , Especificidade por Substrato
5.
J Phys Chem B ; 123(46): 9792-9800, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31608640

RESUMO

The field of solar fuels is a rapidly growing area of research, though low overall efficiencies continue to preclude large-scale implementation. To resolve the elementary processes involved in light-driven energy storage and identify key factors contributing to efficiency losses, systematic investigation and optimization are necessary. In this work, a ruthenium chromophore is directly attached to a model hydrogenase enzyme, nickel-substituted rubredoxin, to construct a molecular system capable of photoinduced hydrogen evolution. Time-resolved absorption and emission spectroscopy reveal direct, rapid intramolecular electron transfer (ET) between the two metal centers to generate a charge-separated state that persists for ∼1 µs, though this species is not productive for hydrogen evolution. Investigation of the photochemical behavior under catalytic conditions in conjunction with thermochemical analyses suggests that ET to the catalytic nickel site from the reductively quenched ruthenium center is the rate-determining step. By eliminating the need for three components to diffuse together, direct mechanistic information about catalysis is obtained in a time-resolved manner. This approach is generalizable to study the activity and intramolecular charge transfer properties of a wide range of photosensitizers and catalysts, with applicability toward diverse energy conversion reactions.


Assuntos
Hidrogênio/química , Níquel/química , Rubredoxinas/química , Energia Solar , Catálise , Transporte de Elétrons , Hidrogênio/metabolismo , Cinética , Oxirredução , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Rubredoxinas/genética , Rubredoxinas/metabolismo , Rutênio/química , Luz Solar
6.
ChemSusChem ; 10(22): 4424-4429, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-28948691

RESUMO

An enzymatic system for light-driven hydrogen generation has been developed through covalent attachment of a ruthenium chromophore to nickel-substituted rubredoxin (NiRd). The photoinduced activity of the hybrid enzyme is significantly greater than that of a two-component system and is strongly dependent on the position of the ruthenium phototrigger relative to the active site, indicating a role for intramolecular electron transfer in catalysis. Steady-state and time-resolved emission spectra reveal a pathway for rapid, direct quenching of the ruthenium excited state by nickel, but low overall turnover numbers suggest initial electron transfer is not the rate-limiting step. This approach is ideally suited for detailed mechanistic investigations of catalysis by NiRd and other molecular systems, with implications for generation of solar fuels.


Assuntos
Complexos de Coordenação/química , Hidrogênio/química , Níquel/química , Rubredoxinas/química , Água/química , Catálise , Transporte de Elétrons , Luz , Processos Fotoquímicos , Rutênio/química , Energia Solar
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa