Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Psychiatry ; 27(6): 2689-2699, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35354926

RESUMO

Major depressive disorder (MDD) was previously hypothesized to be a disease of monoamine deficiency in which low levels of monoamines in the synaptic cleft were believed to underlie depressive symptoms. More recently, however, there has been a paradigm shift toward a neuroplasticity hypothesis of depression in which downstream effects of antidepressants, such as increased neurogenesis, contribute to improvements in cognition and mood. This review takes a top-down approach to assess how changes in behavior and hippocampal-dependent circuits may be attributed to abnormalities at the molecular, structural, and synaptic level. We conclude with a discussion of how antidepressant treatments share a common effect in modulating neuroplasticity and consider outstanding questions and future perspectives.


Assuntos
Transtorno Depressivo Maior , Adulto , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Depressão/terapia , Transtorno Depressivo Maior/tratamento farmacológico , Hipocampo , Humanos , Plasticidade Neuronal/fisiologia
2.
Brain ; 145(12): 4193-4201, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36004663

RESUMO

Infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is associated with acute and postacute cognitive and neuropsychiatric symptoms including impaired memory, concentration, attention, sleep and affect. Mechanisms underlying these brain symptoms remain understudied. Here we report that SARS-CoV-2-infected hamsters exhibit a lack of viral neuroinvasion despite aberrant blood-brain barrier permeability. Hamsters and patients deceased from coronavirus disease 2019 (COVID-19) also exhibit microglial activation and expression of interleukin (IL)-1ß and IL-6, especially within the hippocampus and the medulla oblongata, when compared with non-COVID control hamsters and humans who died from other infections, cardiovascular disease, uraemia or trauma. In the hippocampal dentate gyrus of both COVID-19 hamsters and humans, we observed fewer neuroblasts and immature neurons. Protracted inflammation, blood-brain barrier disruption and microglia activation may result in altered neurotransmission, neurogenesis and neuronal damage, explaining neuropsychiatric presentations of COVID-19. The involvement of the hippocampus may explain learning, memory and executive dysfunctions in COVID-19 patients.


Assuntos
COVID-19 , Humanos , Citocinas , SARS-CoV-2 , Hipocampo , Neurogênese/fisiologia
4.
Res Sq ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38562777

RESUMO

Mitochondrial oxidative phosphorylation (OxPhos) powers brain activity1,2, and mitochondrial defects are linked to neurodegenerative and neuropsychiatric disorders3,4, underscoring the need to define the brain's molecular energetic landscape5-10. To bridge the cognitive neuroscience and cell biology scale gap, we developed a physical voxelization approach to partition a frozen human coronal hemisphere section into 703 voxels comparable to neuroimaging resolution (3×3×3 mm). In each cortical and subcortical brain voxel, we profiled mitochondrial phenotypes including OxPhos enzyme activities, mitochondrial DNA and volume density, and mitochondria-specific respiratory capacity. We show that the human brain contains a diversity of mitochondrial phenotypes driven by both topology and cell types. Compared to white matter, grey matter contains >50% more mitochondria. We show that the more abundant grey matter mitochondria also are biochemically optimized for energy transformation, particularly among recently evolved cortical brain regions. Scaling these data to the whole brain, we created a backward linear regression model integrating several neuroimaging modalities11, thereby generating a brain-wide map of mitochondrial distribution and specialization that predicts mitochondrial characteristics in an independent brain region of the same donor brain. This new approach and the resulting MitoBrainMap of mitochondrial phenotypes provide a foundation for exploring the molecular energetic landscape that enables normal brain functions, relating it to neuroimaging data, and defining the subcellular basis for regionalized brain processes relevant to neuropsychiatric and neurodegenerative disorders.

5.
bioRxiv ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38496679

RESUMO

Mitochondrial oxidative phosphorylation (OxPhos) powers brain activity1,2, and mitochondrial defects are linked to neurodegenerative and neuropsychiatric disorders3,4, underscoring the need to define the brain's molecular energetic landscape5-10. To bridge the cognitive neuroscience and cell biology scale gap, we developed a physical voxelization approach to partition a frozen human coronal hemisphere section into 703 voxels comparable to neuroimaging resolution (3×3×3 mm). In each cortical and subcortical brain voxel, we profiled mitochondrial phenotypes including OxPhos enzyme activities, mitochondrial DNA and volume density, and mitochondria-specific respiratory capacity. We show that the human brain contains a diversity of mitochondrial phenotypes driven by both topology and cell types. Compared to white matter, grey matter contains >50% more mitochondria. We show that the more abundant grey matter mitochondria also are biochemically optimized for energy transformation, particularly among recently evolved cortical brain regions. Scaling these data to the whole brain, we created a backward linear regression model integrating several neuroimaging modalities11, thereby generating a brain-wide map of mitochondrial distribution and specialization that predicts mitochondrial characteristics in an independent brain region of the same donor brain. This new approach and the resulting MitoBrainMap of mitochondrial phenotypes provide a foundation for exploring the molecular energetic landscape that enables normal brain functions, relating it to neuroimaging data, and defining the subcellular basis for regionalized brain processes relevant to neuropsychiatric and neurodegenerative disorders.

6.
Res Sq ; 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34729556

RESUMO

Infection with the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is associated with onset of neurological and psychiatric symptoms during and after the acute phase of illness 1-4 . Acute SARS-CoV-2 disease (COVID-19) presents with deficits of memory, attention, movement coordination, and mood. The mechanisms of these central nervous system symptoms remain largely unknown.In an established hamster model of intranasal infection with SARS-CoV-2 5 , and patients deceased from COVID-19, we report a lack of viral neuroinvasion despite aberrant BBB permeability, microglial activation, and brain expression of interleukin (IL)-1ß and IL-6, especially within the hippocampus and the inferior olivary nucleus of the medulla, when compared with non-COVID control hamsters and humans who died from other infections, cardiovascular disease, uremia or trauma. In the hippocampus dentate gyrus of both COVID-19 hamsters and humans, fewer cells expressed doublecortin, a marker of neuroblasts and immature neurons.Despite absence of viral neurotropism, we find SARS-CoV-2-induced inflammation, and hypoxia in humans, affect brain regions essential for fine motor function, learning, memory, and emotional responses, and result in loss of adult hippocampal neurogenesis. Neuroinflammation could affect cognition and behaviour via disruption of brain vasculature integrity, neurotransmission, and neurogenesis, acute effects that may persist in COVID-19 survivors with long-COVID symptoms.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa