Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Brain ; 147(2): 414-426, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37703328

RESUMO

Facioscapulohumeral dystrophy (FSHD) has a unique genetic aetiology resulting in partial chromatin relaxation of the D4Z4 macrosatellite repeat array on 4qter. This D4Z4 chromatin relaxation facilitates inappropriate expression of the transcription factor DUX4 in skeletal muscle. DUX4 is encoded by a retrogene that is embedded within the distal region of the D4Z4 repeat array. In the European population, the D4Z4 repeat array is usually organized in a single array that ranges between 8 and 100 units. D4Z4 chromatin relaxation and DUX4 derepression in FSHD is most often caused by repeat array contraction to 1-10 units (FSHD1) or by a digenic mechanism requiring pathogenic variants in a D4Z4 chromatin repressor like SMCHD1, combined with a repeat array between 8 and 20 units (FSHD2). With a prevalence of 1.5% in the European population, in cis duplications of the D4Z4 repeat array, where two adjacent D4Z4 arrays are interrupted by a spacer sequence, are relatively common but their relationship to FSHD is not well understood. In cis duplication alleles were shown to be pathogenic in FSHD2 patients; however, there is inconsistent evidence for the necessity of an SMCHD1 mutation for disease development. To explore the pathogenic nature of these alleles we compared in cis duplication alleles in FSHD patients with or without pathogenic SMCHD1 variant. For both groups we showed duplication-allele-specific DUX4 expression. We studied these alleles in detail using pulsed-field gel electrophoresis-based Southern blotting and molecular combing, emphasizing the challenges in the characterization of these rearrangements. Nanopore sequencing was instrumental to study the composition and methylation of the duplicated D4Z4 repeat arrays and to identify the breakpoints and the spacer sequence between the arrays. By comparing the composition of the D4Z4 repeat array of in cis duplication alleles in both groups, we found that specific combinations of proximal and distal repeat array sizes determine their pathogenicity. Supported by our algorithm to predict pathogenicity, diagnostic laboratories should now be furnished to accurately interpret these in cis D4Z4 repeat array duplications, alleles that can easily be missed in routine settings.


Assuntos
Distrofia Muscular Facioescapuloumeral , Humanos , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/metabolismo , Distrofia Muscular Facioescapuloumeral/patologia , Alelos , Proteínas Cromossômicas não Histona/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Cromatina
2.
Eur J Neurol ; 31(8): e16309, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38656662

RESUMO

BACKGROUND AND PURPOSE: Spinal muscular atrophy (SMA) is a rare and progressive neuromuscular disorder with varying severity levels. The aim of the study was to calculate minimal clinically important difference (MCID), minimal detectable change (MDC), and values for the Hammersmith Functional Motor Scale Expanded (HFMSE) in an untreated international SMA cohort. METHODS: The study employed two distinct methods. MDC was calculated using distribution-based approaches to consider standard error of measurement and effect size change in a population of 321 patients (176 SMA II and 145 SMA III), allowing for stratification based on age and function. MCID was assessed using anchor-based methods (receiver operating characteristic [ROC] curve analysis and standard error) on 76 patients (52 SMA II and 24 SMA III) for whom the 12-month HFMSE could be anchored to a caregiver-reported clinical perception questionnaire. RESULTS: With both approaches, SMA type II and type III patients had different profiles. The MCID, using ROC analysis, identified optimal cutoff points of -2 for type II and -4 for type III patients, whereas using the standard error we found the optimal cutoff points to be 1.5 for improvement and -3.2 for deterioration. Furthermore, distribution-based methods uncovered varying values across age and functional status subgroups within each SMA type. CONCLUSIONS: These results emphasize that the interpretation of a single MCID or MDC value obtained in large cohorts with different functional status needs to be made with caution, especially when these may be used to assess possible responses to new therapies.


Assuntos
Diferença Mínima Clinicamente Importante , Atrofia Muscular Espinal , Humanos , Masculino , Feminino , Criança , Adolescente , Atrofia Muscular Espinal/fisiopatologia , Atrofia Muscular Espinal/diagnóstico , Pré-Escolar , Adulto , Adulto Jovem , Índice de Gravidade de Doença , Estudos de Coortes , Atrofias Musculares Espinais da Infância/fisiopatologia , Atrofias Musculares Espinais da Infância/diagnóstico , Lactente , Avaliação da Deficiência
3.
Eur Heart J ; 44(48): 5064-5073, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37639473

RESUMO

BACKGROUND AND AIMS: Emery-Dreifuss muscular dystrophy (EDMD) is caused by variants in EMD (EDMD1) and LMNA (EDMD2). Cardiac conduction defects and atrial arrhythmia are common to both, but LMNA variants also cause end-stage heart failure (ESHF) and malignant ventricular arrhythmia (MVA). This study aimed to better characterize the cardiac complications of EMD variants. METHODS: Consecutively referred EMD variant-carriers were retrospectively recruited from 12 international cardiomyopathy units. MVA and ESHF incidences in male and female variant-carriers were determined. Male EMD variant-carriers with a cardiac phenotype at baseline (EMDCARDIAC) were compared with consecutively recruited male LMNA variant-carriers with a cardiac phenotype at baseline (LMNACARDIAC). RESULTS: Longitudinal follow-up data were available for 38 male and 21 female EMD variant-carriers [mean (SD) ages 33.4 (13.3) and 43.3 (16.8) years, respectively]. Nine (23.7%) males developed MVA and five (13.2%) developed ESHF during a median (inter-quartile range) follow-up of 65.0 (24.3-109.5) months. No female EMD variant-carrier had MVA or ESHF, but nine (42.8%) developed a cardiac phenotype at a median (inter-quartile range) age of 58.6 (53.2-60.4) years. Incidence rates for MVA were similar for EMDCARDIAC and LMNACARDIAC (4.8 and 6.6 per 100 person-years, respectively; log-rank P = .49). Incidence rates for ESHF were 2.4 and 5.9 per 100 person-years for EMDCARDIAC and LMNACARDIAC, respectively (log-rank P = .09). CONCLUSIONS: Male EMD variant-carriers have a risk of progressive heart failure and ventricular arrhythmias similar to that of male LMNA variant-carriers. Early implantable cardioverter defibrillator implantation and heart failure drug therapy should be considered in male EMD variant-carriers with cardiac disease.


Assuntos
Cardiopatias , Insuficiência Cardíaca , Distrofia Muscular de Emery-Dreifuss , Distrofia Muscular de Emery-Dreifuss Ligada ao Cromossomo X , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Distrofia Muscular de Emery-Dreifuss Ligada ao Cromossomo X/complicações , Estudos Retrospectivos , Arritmias Cardíacas/epidemiologia , Arritmias Cardíacas/genética , Arritmias Cardíacas/complicações , Cardiopatias/complicações , Distrofia Muscular de Emery-Dreifuss/complicações , Distrofia Muscular de Emery-Dreifuss/genética , Distrofia Muscular de Emery-Dreifuss/patologia , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/complicações , Mutação
4.
Brain ; 145(6): 2108-2120, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34919635

RESUMO

Andersen-Tawil syndrome is a neurological channelopathy caused by mutations in the KCNJ2 gene that encodes the ubiquitously expressed Kir2.1 potassium channel. The syndrome is characterized by episodic weakness, cardiac arrythmias and dysmorphic features. However, the full extent of the multisystem phenotype is not well described. In-depth, multisystem phenotyping is required to inform diagnosis and guide management. We report our findings following deep multimodal phenotyping across all systems in a large case series of 69 total patients, with comprehensive data for 52. As a national referral centre, we assessed point prevalence and showed it is higher than previously reported, at 0.105 per 100 000 population in England. While the classical phenotype of episodic weakness is recognized, we found that a quarter of our cohort have fixed myopathy and 13.5% required a wheelchair or gait aid. We identified frequent fat accumulation on MRI and tubular aggregates on muscle biopsy, emphasizing the active myopathic process underpinning the potential for severe neuromuscular disability. Long exercise testing was not reliable in predicting neuromuscular symptoms. A normal long exercise test was seen in five patients, of whom four had episodic weakness. Sixty-seven per cent of patients treated with acetazolamide reported a good neuromuscular response. Thirteen per cent of the cohort required cardiac defibrillator or pacemaker insertion. An additional 23% reported syncope. Baseline electrocardiograms were not helpful in stratifying cardiac risk, but Holter monitoring was. A subset of patients had no cardiac symptoms, but had abnormal Holter monitor recordings which prompted medication treatment. We describe the utility of loop recorders to guide management in two such asymptomatic patients. Micrognathia was the most commonly reported skeletal feature; however, 8% of patients did not have dysmorphic features and one-third of patients had only mild dysmorphic features. We describe novel phenotypic features including abnormal echocardiogram in nine patients, prominent pain, fatigue and fasciculations. Five patients exhibited executive dysfunction and slowed processing which may be linked to central expression of KCNJ2. We report eight new KCNJ2 variants with in vitro functional data. Our series illustrates that Andersen-Tawil syndrome is not benign. We report marked neuromuscular morbidity and cardiac risk with multisystem involvement. Our key recommendations include proactive genetic screening of all family members of a proband. This is required, given the risk of cardiac arrhythmias among asymptomatic individuals, and a significant subset of Andersen-Tawil syndrome patients have no (or few) dysmorphic features or negative long exercise test. We discuss recommendations for increased cardiac surveillance and neuropsychometry testing.


Assuntos
Síndrome de Andersen , Síndrome de Andersen/diagnóstico , Síndrome de Andersen/genética , Síndrome de Andersen/terapia , Eletrocardiografia , Testes Genéticos , Humanos , Morbidade , Mutação/genética , Fenótipo
5.
Brain ; 145(2): 596-606, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-34515763

RESUMO

Sarcoglycanopathies include four subtypes of autosomal recessive limb-girdle muscular dystrophies (LGMDR3, LGMDR4, LGMDR5 and LGMDR6) that are caused, respectively, by mutations in the SGCA, SGCB, SGCG and SGCD genes. Delta-sarcoglycanopathy (LGMDR6) is the least frequent and is considered an ultra-rare disease. Our aim was to characterize the clinical and genetic spectrum of a large international cohort of LGMDR6 patients and to investigate whether or not genetic or protein expression data could predict a disease's severity. This is a retrospective study collecting demographic, genetic, clinical and histological data of patients with genetically confirmed LGMDR6 including protein expression data from muscle biopsies. We contacted 128 paediatric and adult neuromuscular units around the world that reviewed genetic data of patients with a clinical diagnosis of a neuromuscular disorder. We identified 30 patients with a confirmed diagnosis of LGMDR6 of which 23 patients were included in this study. Eighty-seven per cent of the patients had consanguineous parents. Ninety-one per cent of the patients were symptomatic at the time of the analysis. Proximal muscle weakness of the upper and lower limbs was the most common presenting symptom. Distal muscle weakness was observed early over the course of the disease in 56.5% of the patients. Cardiac involvement was reported in five patients (21.7%) and four patients (17.4%) required non-invasive ventilation. Sixty per cent of patients were wheelchair-bound since early teens (median age of 12.0 years). Patients with absent expression of the sarcoglycan complex on muscle biopsy had a significant earlier onset of symptoms and an earlier age of loss of ambulation compared to patients with residual protein expression. This study confirmed that delta-sarcoglycanopathy is an ultra-rare neuromuscular condition and described the clinical and molecular characteristics of the largest yet-reported collected cohort of patients. Our results showed that this is a very severe and quickly progressive disease characterized by generalized muscle weakness affecting predominantly proximal and distal muscles of the limbs. Similar to other forms of sarcoglycanopathies, the severity and rate of progressive weakness correlates inversely with the abundance of protein on muscle biopsy.


Assuntos
Distrofia Muscular do Cíngulo dos Membros , Distrofias Musculares , Sarcoglicanopatias , Adulto , Criança , Humanos , Debilidade Muscular , Distrofias Musculares/genética , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Distrofia Muscular do Cíngulo dos Membros/genética , Estudos Retrospectivos , Sarcoglicanopatias/genética , Sarcoglicanas/genética , Sarcoglicanas/metabolismo
6.
Rheumatology (Oxford) ; 61(4): 1645-1650, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-34264321

RESUMO

OBJECTIVES: Diagnosing the idiopathic inflammatory myopathies (IIMs) can be challenging as several conditions, including genetic myopathies such as limb girdle muscular dystrophy type R12 (LGMD 2 l, anoctaminopathy) mimic the presentation. Here we describe learning points identified from review of four patients with LGMD 2 l who were initially incorrectly diagnosed with IIM. Our aim is to provide clinicians working in adult rheumatology services with a toolkit to help identify non-inflammatory presentations of myopathy. METHODS: We performed retrospective review of medical notes, laboratory results, muscle imaging and histological findings of four patients with LGMD 2 l who were previously misdiagnosed with IIM. We focussed on clinical presentation and progression, therapeutic agents used and events leading to revision of the diagnosis. RESULTS: Three male patients and one female patient with a mean age of 51 years at presentation were reviewed. In each case, treatment with immunosuppressants, in one case for >15 years, was observed without a clear therapeutic response. All patients were negative for anti-nuclear antibodies and available myositis-associated/specific autoantibodies and associated connective tissue disease features were absent. Prominent fatty infiltration and selective muscle involvement on thigh MRI was found in common. CONCLUSIONS: Adult-onset genetic myopathies, particularly LGMD R12, can mimic IIM. Accurate diagnosis is crucial to avoid the use of potentially harmful immunosuppressive therapies, to allow appropriate genetic counselling and to facilitate involvement in research studies.


Assuntos
Doenças Musculares , Distrofia Muscular do Cíngulo dos Membros , Miosite , Erros de Diagnóstico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Musculares/diagnóstico , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Distrofia Muscular do Cíngulo dos Membros/genética , Miosite/diagnóstico
7.
Brain ; 144(2): 584-600, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33559681

RESUMO

The extracellular matrix comprises a network of macromolecules such as collagens, proteoglycans and glycoproteins. VWA1 (von Willebrand factor A domain containing 1) encodes a component of the extracellular matrix that interacts with perlecan/collagen VI, appears to be involved in stabilizing extracellular matrix structures, and demonstrates high expression levels in tibial nerve. Vwa1-deficient mice manifest with abnormal peripheral nerve structure/function; however, VWA1 variants have not previously been associated with human disease. By interrogating the genome sequences of 74 180 individuals from the 100K Genomes Project in combination with international gene-matching efforts and targeted sequencing, we identified 17 individuals from 15 families with an autosomal-recessive, non-length dependent, hereditary motor neuropathy and rare biallelic variants in VWA1. A single disease-associated allele p.(G25Rfs*74), a 10-bp repeat expansion, was observed in 14/15 families and was homozygous in 10/15. Given an allele frequency in European populations approaching 1/1000, the seven unrelated homozygote individuals ascertained from the 100K Genomes Project represents a substantial enrichment above expected. Haplotype analysis identified a shared 220 kb region suggesting that this founder mutation arose >7000 years ago. A wide age-range of patients (6-83 years) helped delineate the clinical phenotype over time. The commonest disease presentation in the cohort was an early-onset (mean 2.0 ± 1.4 years) non-length-dependent axonal hereditary motor neuropathy, confirmed on electrophysiology, which will have to be differentiated from other predominantly or pure motor neuropathies and neuronopathies. Because of slow disease progression, ambulation was largely preserved. Neurophysiology, muscle histopathology, and muscle MRI findings typically revealed clear neurogenic changes with single isolated cases displaying additional myopathic process. We speculate that a few findings of myopathic changes might be secondary to chronic denervation rather than indicating an additional myopathic disease process. Duplex reverse transcription polymerase chain reaction and immunoblotting using patient fibroblasts revealed that the founder allele results in partial nonsense mediated decay and an absence of detectable protein. CRISPR and morpholino vwa1 modelling in zebrafish demonstrated reductions in motor neuron axonal growth, synaptic formation in the skeletal muscles and locomotive behaviour. In summary, we estimate that biallelic variants in VWA1 may be responsible for up to 1% of unexplained hereditary motor neuropathy cases in Europeans. The detailed clinical characterization provided here will facilitate targeted testing on suitable patient cohorts. This novel disease gene may have previously evaded detection because of high GC content, consequential low coverage and computational difficulties associated with robustly detecting repeat-expansions. Reviewing previously unsolved exomes using lower QC filters may generate further diagnoses.


Assuntos
Proteínas da Matriz Extracelular/genética , Neuropatia Hereditária Motora e Sensorial/genética , Adulto , Idoso , Animais , Comportamento Animal/fisiologia , Criança , Feminino , Neuropatia Hereditária Motora e Sensorial/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Mutação , Linhagem , Adulto Jovem , Peixe-Zebra
8.
Muscle Nerve ; 64(5): 545-551, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34432301

RESUMO

INTRODUCTION/AIMS: Spinal muscular atrophy (SMA) type III is a relatively mild form of SMA. Few studies have investigated the changes in both respiratory and upper limb function within this population after loss of ambulation. The aim of this study was to assess change in percentage of predicted forced vital capacity (FVC% predicted) and change in the Revised Upper Limb Module (RULM) score in these patients throughout a 24-month period after loss of ambulation. Effect of scoliosis and its surgical correction, disease duration since loss of ambulation, weight, and height were also investigated. METHODS: Retrospective analyses were performed on 24 nonambulant SMA III patients from data collected at two centers in the United Kingdom. RESULTS: The FVC% predicted score showed a significant progressive deterioration of 17% over the 24-month period. Respiratory deterioration correlated significantly with age, weight, disease duration since loss of ambulation, and spinal correctional surgery. Longitudinal RULM data were available for 16 patients; a significant deterioration was observed with a mean decrease in score of 3 over 24 months. Age correlated negatively with RULM score, as did height and time since loss of ambulation. A significant positive correlation between FVC% predicted and RULM was demonstrated. DISCUSSION: This study highlights how SMA type III patients have progressive deterioration of respiratory and upper limb function after loss of ambulation. Combining data from these assessments could provide insight into clinical progression, inform clinical trials, and provide assistance in managing disease progression expectations for patients.


Assuntos
Atrofia Muscular Espinal , Atrofias Musculares Espinais da Infância , Criança , Humanos , Estudos Retrospectivos , Atrofias Musculares Espinais da Infância/tratamento farmacológico , Extremidade Superior , Caminhada
9.
Am J Hum Genet ; 100(3): 523-536, 2017 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-28190456

RESUMO

Phosphoinositides are small phospholipids that control diverse cellular downstream signaling events. Their spatial and temporal availability is tightly regulated by a set of specific lipid kinases and phosphatases. Congenital muscular dystrophies are hereditary disorders characterized by hypotonia and weakness from birth with variable eye and central nervous system involvement. In individuals exhibiting congenital muscular dystrophy, early-onset cataracts, and mild intellectual disability but normal cranial magnetic resonance imaging, we identified bi-allelic mutations in INPP5K, encoding inositol polyphosphate-5-phosphatase K. Mutations impaired phosphatase activity toward the phosphoinositide phosphatidylinositol (4,5)-bisphosphate or altered the subcellular localization of INPP5K. Downregulation of INPP5K orthologs in zebrafish embryos disrupted muscle fiber morphology and resulted in abnormal eye development. These data link congenital muscular dystrophies to defective phosphoinositide 5-phosphatase activity that is becoming increasingly recognized for its role in mediating pivotal cellular mechanisms contributing to disease.


Assuntos
Catarata/genética , Disfunção Cognitiva/genética , Distrofia Muscular do Cíngulo dos Membros/genética , Anormalidades Musculoesqueléticas/genética , Monoéster Fosfórico Hidrolases/genética , Adolescente , Adulto , Alelos , Animais , Encéfalo/patologia , Criança , Pré-Escolar , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Estudo de Associação Genômica Ampla , Humanos , Lactente , Deficiência Intelectual/genética , Imageamento por Ressonância Magnética , Masculino , Músculo Esquelético/patologia , Mutação , Linhagem , Adulto Jovem , Peixe-Zebra/embriologia , Peixe-Zebra/genética
10.
J Neurol Neurosurg Psychiatry ; 90(5): 576-585, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30530568

RESUMO

BACKGROUND AND OBJECTIVE: Oculopharyngeal muscular dystrophy (OPMD) is a genetic disorder caused by an abnormal expansion of GCN triplets within the PABPN1 gene. Previous descriptions have focused on lower limb muscles in small cohorts of patients with OPMD, but larger imaging studies have not been performed. Previous imaging studies have been too small to be able to correlate imaging findings to genetic and clinical data. METHODS: We present cross-sectional, T1-weighted muscle MRI and CT-scan data from 168 patients with genetically confirmed OPMD. We have analysed the pattern of muscle involvement in the disease using hierarchical analysis and presented it as heatmaps. Results of the scans were correlated with genetic and clinical data. RESULTS: Fatty replacement was identified in 96.7% of all symptomatic patients. The tongue, the adductor magnus and the soleus were the most commonly affected muscles. Muscle pathology on MRI correlated positively with disease duration and functional impairment. CONCLUSIONS: We have described a pattern that can be considered characteristic of OPMD. An early combination of fat replacement in the tongue, adductor magnus and soleus can be helpful for differential diagnosis. The findings suggest the natural history of the disease from a radiological point of view. The information generated by this study is of high diagnostic value and important for clinical trial development.


Assuntos
Músculo Esquelético/diagnóstico por imagem , Distrofia Muscular Oculofaríngea/diagnóstico por imagem , Adulto , Estudos de Coortes , Estudos Transversais , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Distrofia Muscular Oculofaríngea/complicações , Distrofia Muscular Oculofaríngea/patologia , Tomografia Computadorizada por Raios X
11.
J Neurol Neurosurg Psychiatry ; 89(1): 72-77, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28889091

RESUMO

OBJECTIVES: To characterise the pattern and spectrum of involvement on muscle MRI in a large cohort of patients with sarcoglycanopathies, which are limb-girdle muscular dystrophies (LGMD2C-2F) caused by mutations in one of the four genes coding for muscle sarcoglycans. METHODS: Lower limb MRI scans of patients with LGMD2C-2F, ranging from severe childhood variants to milder adult-onset forms, were collected in 17 neuromuscular referral centres in Europe and USA. Muscle involvement was evaluated semiquantitatively on T1-weighted images according to a visual score, and the global pattern was assessed as well. RESULTS: Scans from 69 patients were examined (38 LGMD2D, 18 LGMD2C, 12 LGMD2E and 1 LGMD2F). A common pattern of involvement was found in all the analysed scans irrespective of the mutated gene. The most and earliest affected muscles were the thigh adductors, glutei and posterior thigh groups, while lower leg muscles were relatively spared even in advanced disease. A proximodistal gradient of involvement of vasti muscles was a consistent finding in these patients, including the most severe ones. CONCLUSIONS: Muscle involvement on MRI is consistent in patients with LGMD2C-F and can be helpful in distinguishing sarcoglycanopathies from other LGMDs or dystrophinopathies, which represent the most common differential diagnoses. Our data provide evidence about selective susceptibility or resistance to degeneration of specific muscles when one of the sarcoglycans is deficient, as well as preliminary information about progressive involvement of the different muscles over time.


Assuntos
Imageamento por Ressonância Magnética/métodos , Sarcoglicanopatias/genética , Sarcoglicanas/genética , Adolescente , Adulto , Criança , Pré-Escolar , Europa (Continente) , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Mutação , Fenótipo , Sarcoglicanas/deficiência , Estados Unidos
12.
J Neurol Neurosurg Psychiatry ; 89(7): 762-768, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29437916

RESUMO

BACKGROUND: Defects in glycosylation of alpha-dystroglycan (α-DG) cause autosomal-recessive disorders with wide clinical and genetic heterogeneity, with phenotypes ranging from congenital muscular dystrophies to milder limb girdle muscular dystrophies. Patients show variable reduction of immunoreactivity to antibodies specific for glycoepitopes of α-DG on a muscle biopsy. Recessive mutations in 18 genes, including guanosine diphosphate mannose pyrophosphorylase B (GMPPB), have been reported to date. With no specific clinical and pathological handles, diagnosis requires parallel or sequential analysis of all known genes. METHODS: We describe clinical, genetic and biochemical findings of 21 patients with GMPPB-associated dystroglycanopathy. RESULTS: We report eight novel mutations and further expand current knowledge on clinical and muscle MRI features of this condition. In addition, we report a consistent shift in the mobility of beta-dystroglycan (ß-DG) on Western blot analysis of all patients analysed by this mean. This was only observed in patients with GMPPB in our large dystroglycanopathy cohort. We further demonstrate that this mobility shift in patients with GMPPB was due to abnormal N-linked glycosylation of ß-DG. CONCLUSIONS: Our data demonstrate that a change in ß-DG electrophoretic mobility in patients with dystroglycanopathy is a distinctive marker of the molecular defect in GMPPB.


Assuntos
Distroglicanas/metabolismo , Guanosina Difosfato Manose/genética , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Mutação/genética , Nucleotidiltransferases/genética , Adolescente , Idoso , Biomarcadores/metabolismo , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Distrofias Musculares/patologia
13.
Muscle Nerve ; 57(2): 316-320, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28662292

RESUMO

INTRODUCTION: In light of recent evidence indicating that cancer is part of the myotonic dystrophy (DM) phenotype, we assessed the prevalence of benign and malignant tumors among 220 patients enrolled in the UK Myotonic Dystrophy Patient Registry and evaluated factors associated with their development. METHODS: A survey was distributed to collect tumor history and lifestyle information. We used multinomial logistic regression for the analysis. RESULTS: Thirty-nine benign (30 patients), and 16 malignant (15 patients) tumors were reported. Increasing age (odds ratio [OR] = 1.13, 95% confidence interval [CI] = 1.05-1.21, P = 0.001) and earlier age at DM diagnosis (OR = 1.06, 95% CI = 1.00-1.13, P = 0.04) were associated with benign and malignant tumors (OR = 1.20, 95% CI = 1.10-1.30, P < 0.001 and OR = 1.08, 95% CI = 1.01-1.15, P = 0.02, respectively). Female gender was associated with benign tumors only (OR = 6.43, 95% CI = 1.79-23.04, P = 0.004). No associations were observed between tumors and smoking (P = 0.24), alcohol consumption (P = 0.50), or body mass index (P = 0.21). DISCUSSION: Our results confirm previous findings suggesting a limited role for common lifestyle factors and a potential genetic contribution in DM tumor predisposition. Muscle Nerve 57: 316-320, 2018.


Assuntos
Distrofia Miotônica/complicações , Distrofia Miotônica/epidemiologia , Neoplasias/complicações , Neoplasias/epidemiologia , Adulto , Fatores Etários , Idade de Início , Idoso , Feminino , Humanos , Estilo de Vida , Masculino , Pessoa de Meia-Idade , Sistema de Registros , Fatores de Risco , Fatores Sexuais , Reino Unido/epidemiologia
14.
Brain ; 140(1): 37-48, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27816943

RESUMO

Congenital myopathies define a heterogeneous group of neuromuscular diseases with neonatal or childhood hypotonia and muscle weakness. The genetic cause is still unknown in many patients, precluding genetic counselling and better understanding of the physiopathology. To identify novel genetic causes of congenital myopathies, exome sequencing was performed in three consanguineous families. We identified two homozygous frameshift mutations and a homozygous nonsense mutation in the mitogen-activated protein triple kinase ZAK. In total, six affected patients carry these mutations. Reverse transcription polymerase chain reaction and transcriptome analyses suggested nonsense mRNA decay as a main impact of mutations. The patients demonstrated a generalized slowly progressive muscle weakness accompanied by decreased vital capacities. A combination of proximal contractures with distal joint hyperlaxity is a distinct feature in one family. The low endurance and compound muscle action potential amplitude were strongly ameliorated on treatment with anticholinesterase inhibitor in another patient. Common histopathological features encompassed fibre size variation, predominance of type 1 fibre and centralized nuclei. A peculiar subsarcolemmal accumulation of mitochondria pointing towards the centre of the fibre was a novel histological hallmark in one family. These findings will improve the molecular diagnosis of congenital myopathies and implicate the mitogen-activated protein kinase (MAPK) signalling as a novel pathway altered in these rare myopathies.


Assuntos
Fibras Musculares de Contração Rápida/patologia , Fibras Musculares de Contração Lenta/patologia , Miopatias Congênitas Estruturais , Proteínas Quinases/genética , Adulto , Consanguinidade , Exoma , Feminino , Humanos , MAP Quinase Quinase Quinases , Masculino , Mutação , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/patologia , Miopatias Congênitas Estruturais/fisiopatologia , Linhagem
15.
Neuromuscul Disord ; 35: 42-52, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38061948

RESUMO

The Myotubular and Centronuclear Myopathy Registry is an international research database containing key longitudinal data on a diverse and growing cohort of individuals affected by this group of rare and ultra-rare neuromuscular conditions. It can inform and support all areas of translational research including epidemiological and natural history studies, clinical trial feasibility planning, recruitment for clinical trials or other research studies, stand-alone clinical studies, standards of care development, and provision of real-world evidence data. For ten years, it has also served as a valuable communications tool and provided a link between the scientific and patient communities. With the anticipated advent of disease-modifying therapies for these conditions, the registry is a key resource for the generation of post-authorisation data for regulatory decision-making, real world evidence, and patient-reported outcome measures. In this paper we present some key data from the current 444 registered individuals with the following genotype split: MTM1 n=270, DNM2 n=42, BIN1 n=4, TTN n=4, RYR1 n=12, other n=4, unknown n=108. The data presented are consistent with the current literature and the common understanding of a strong genotype/phenotype correlations in CNM, most notably the data supports the current knowledge that XLMTM is typically the most severe form of CNM. Additionally, we outline the ways in which the registry supports research, and, more generally, the importance of continuous investment and development to maintain the relevance of registries for all stakeholders. Further information on the registry and contact details are available on the registry website at www.mtmcnmregistry.org.


Assuntos
Músculo Esquelético , Miopatias Congênitas Estruturais , Humanos , Pesquisa Translacional Biomédica , Dinamina II/genética , Genótipo , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/terapia
16.
J Neuromuscul Dis ; 11(2): 361-368, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38189761

RESUMO

Background: Spinal muscular atrophy (SMA) is a progressive neuromuscular disease caused by mutations in Survival motor neuron 1 (SMN1) gene, leading to reduction in survival motor neuron protein (SMN), key for motor neuron survival and function in the brainstem and spinal cord. Risdiplam is an orally administered SMN2-splicing modifier which increases production of functional SMN protein. Risdiplam was offered in the UK under early access to medicines scheme (EAMS) to SMA type 1 and 2 patients aged 2 months and older, not suitable for authorised treatments from September 2020 to December 2021. Objective: To describe the largest paediatric European real-world set of data on patients' characteristics and short-term safety for risdiplam in Great Britain through EAMS. Methods: We collated data from SMA REACH UK a national clinical and research network for all patients enrolled onto EAMS and assessed all submitted adverse events. Results: Of the 92 patients; 78% were Type 2 SMA, mean age 10.9 years, range 0-17 years. 56 were treatment naïve, 33 previously treated; of these 25 had received nusinersen, 3 previous treatment unknown. Sixty adverse events (AEs) were reported occurring in 34 patients. The commonest were respiratory tract infections and gastrointestinal disturbance. Four life-threatening events were reported with 2 deaths and permanent cessation of risdiplam in 3 patients.Overall, 38/60 AEs were considered unrelated to risdiplam, 10/60 related to risdiplam and for 12/60 causality not specified. Conclusions: This study found a safety profile similar to clinical trials with no new safety concerns identified. With the restricted eligibility of onasemnogene abeparvovec and complications of nusinersen administration, EAMS allowed access or continued treatment to naïve patients or patients no longer suitable for approved medications. Collection of longitudinal data for this complex population is needed, to provide greater insights into risdiplam's role in addressing patients' needs into the future.


Assuntos
Compostos Azo , Atrofia Muscular Espinal , Atrofias Musculares Espinais da Infância , Humanos , Criança , Recém-Nascido , Lactente , Pré-Escolar , Adolescente , Reino Unido , Atrofia Muscular Espinal/tratamento farmacológico , Atrofia Muscular Espinal/genética , Atrofias Musculares Espinais da Infância/tratamento farmacológico , Pirimidinas/efeitos adversos
17.
medRxiv ; 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38370827

RESUMO

Background: Weakness of facial, ocular, and axial muscles is a common clinical presentation in congenital myopathies caused by pathogenic variants in genes encoding triad proteins. Abnormalities in triad structure and function resulting in disturbed excitation-contraction coupling and Ca 2+ homeostasis can contribute to disease pathology. Methods: We analysed exome and genome sequencing data from three unrelated individuals with congenital myopathy characterised by striking facial, ocular, and bulbar involvement. We collected deep phenotypic data from the affected individuals. We analysed the RNA-seq data of one proband and performed gene expression outlier analysis in 129 samples. Results: The three probands had remarkably similar clinical presentation with prominent facial, ocular, and bulbar features. Disease onset was in the neonatal period with hypotonia, poor feeding, cleft palate and talipes. Muscle weakness was generalised but most prominent in the lower limbs with facial weakness also present. All patients had myopathic facies, bilateral ptosis, ophthalmoplegia and fatiguability. While muscle biopsy on light microscopy did not show any obvious morphological abnormalities, ultrastructural analysis showed slightly reduced triads, and structurally abnormal sarcoplasmic reticulum. DNA sequencing identified three unique homozygous loss of function variants in JPH1 , encoding junctophilin-1 in the three families; a stop-gain (c.354C>A; p.Tyr118*) and two frameshift (c.373del p.Asp125Thrfs*30 and c.1738del; p.Leu580Trpfs*16) variants. Muscle RNA-seq showed strong downregulation of JPH1 in the F3 proband. Conclusions: Junctophilin-1 is critical to the formation of skeletal muscle triad junctions by connecting the sarcoplasmic reticulum and T-tubules. Our findings suggest that loss of JPH1 results in a congenital myopathy with prominent facial, bulbar and ocular involvement. Key message: This study identified novel homozygous loss-of-function variants in the JPH1 gene, linking them to a unique form of congenital myopathy characterised by severe facial and ocular symptoms. Our research sheds light on the critical impact on junctophilin-1 function in skeletal muscle triad junction formation and the consequences of its disruption resulting in a myopathic phenotype. What is already known on this topic: Previous studies have shown that pathogenic variants in genes encoding triad proteins lead to various myopathic phenotypes, with clinical presentations often involving muscle weakness and myopathic facies. The triad structure is essential for excitation-contraction (EC) coupling and calcium homeostasis and is a key element in muscle physiology. What this study adds and how this study might affect research practice or policy: This study establishes that homozygous loss-of-function mutations in JPH1 cause a congenital myopathy predominantly affecting facial and ocular muscles. This study also provides clinical insights that may aid the clinicians in diagnosing similar genetically unresolved cases.

18.
Neurol Clin Pract ; 14(1): e200224, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38107546

RESUMO

Background and Objectives: Spinal muscular atrophy (SMA) is a neurodegenerative disorder manifesting with progressive muscle weakness and atrophy. SMA type 1 used to be fatal within the first 2 years of life, but is now treatable with therapies targeting splicing modification and gene replacement. Nusinersen, risdiplam, and onasemnogene abeparvovec-xioi improve survival, motor strength, endurance, and ability to thrive, allowing many patients to potentially attain a normal life; all have been recently approved by major regulatory agencies. Although these therapies have revolutionized the world of SMA, they are associated with a high economic burden, and access to these therapies is limited in some countries. The primary objective of this study was to compare the availability and implementation of treatment of SMA from different regions of the world. Methods: In this qualitative study, we surveyed health care providers from 21 countries regarding their experiences caring for patients with SMA. The main outcome measures were provider survey responses on newborn screening, drug availability/access, barriers to treatment, and related questions. Results: Twenty-four providers from 21 countries with decades of experience (mean 26 years) in treating patients with SMA responded to the survey. Nusinersen was the most available therapy for SMA. Our survey showed that while genetic testing is usually available, newborn screening is still unavailable in many countries. The provider-reported treatment cost also varied between countries, and economic burden was a major barrier in treating patients with SMA. Discussion: Overall, this survey highlights the global inequality in managing patients with SMA. The spread of newborn screening is essential in ensuring improved access to care for patients with SMA. With the advancement of neurotherapeutics, more genetic diseases will soon be treatable, and addressing the global inequality in clinical care will require novel approaches to mitigate such inequality in the future.

19.
Sci Rep ; 14(1): 3365, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336890

RESUMO

Becker muscular dystrophy (BMD) is characterised by fiber loss and expansion of fibrotic and adipose tissue. Several cells interact locally in what is known as the degenerative niche. We analysed muscle biopsies of controls and BMD patients at early, moderate and advanced stages of progression using Hyperion imaging mass cytometry (IMC) by labelling single sections with 17 markers identifying different components of the muscle. We developed a software for analysing IMC images and studied changes in the muscle composition and spatial correlations between markers across disease progression. We found a strong correlation between collagen-I and the area of stroma, collagen-VI, adipose tissue, and M2-macrophages number. There was a negative correlation between the area of collagen-I and the number of satellite cells (SCs), fibres and blood vessels. The comparison between fibrotic and non-fibrotic areas allowed to study the disease process in detail. We found structural differences among non-fibrotic areas from control and patients, being these latter characterized by increase in CTGF and in M2-macrophages and decrease in fibers and blood vessels. IMC enables to study of changes in tissue structure along disease progression, spatio-temporal correlations and opening the door to better understand new potential pathogenic pathways in human samples.


Assuntos
Distrofia Muscular de Duchenne , Humanos , Distrofia Muscular de Duchenne/patologia , Atrofia Muscular/metabolismo , Músculos/metabolismo , Colágeno/metabolismo , Progressão da Doença , Citometria por Imagem , Músculo Esquelético/metabolismo
20.
Neurol Clin Pract ; 14(3): e200298, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38932995

RESUMO

Background and Objectives: Nusinersen has shown significant functional motor benefit in the milder types of spinal muscular atrophy (SMA). Less is known on the respiratory outcomes in patients with nusinersen-treated SMA. The aim of this study was to describe changes in respiratory function in pediatric patients with SMA type 2 and 3 on regular treatment with nusinersen within the iSMAc international cohort and to compare their trajectory with the natural history (NH) data published by the consortium in 2020. Methods: This is a 5-year retrospective observational study of pediatric SMA type 2 and nonambulant type 3 (age ≤18 years) treated with nusinersen. The primary objective was to compare the slopes of decline in forced vital capacity % predicted (FVC% pred.), FVC, and age when FVC dropped below 60% between the treated patients and a control group from the natural history cohort. Data on peak cough flow and the use of noninvasive ventilation (NIV) and cough assist were collected. Results: Data were available for 69 treated patients, 53 were SMA type 2 and 16 type 3. The mean (SD) age at first injection was 8.5 (3.2) and 9.7 (3.7) years, respectively. The median (interquartile range) treatment duration was 1 (0.7; 1.9) and 1.2 (0.9; 1.9) years, respectively. At the time of the first nusinersen injection, 24 of 52 (46%) patients with SMA type 2 and 2 of 16 (13%) patients with SMA type 3 were on NIV. Forty-three of 53 (81%) and 4 of 16 (25%) patients used cough device. FVC% pred. in treated patients with SMA type 2 declined annually by 2.3% vs 3.9% in NH (p = 0.08) and in treated patients with type 3 by 2.6% vs 3.4% NH (p = 0.59). Patients treated reached FVC <60% later than untreated (12.1 vs 10 years, p = 0.05). A higher percentage of treated vs untreated patients maintained FVC% pred. equal/above their baseline after 12 (65% vs 36%) and 24 (50% vs 24%) months, respectively. NIV use among treated did not significantly change throughout 1-year follow-up. Discussion: This study included the largest real-world cohort of pediatric patients with milder SMA types. The results suggest a positive role of nusinersen in delaying the respiratory decline in patients treated longer than 1 year when compared with natural history. Larger cohorts and longer observation are planned. Classification of Evidence: This study provided Class III evidence that nusinersen slows progression for patients with SMA types 2 and 3 compared with a natural history cohort.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa