RESUMO
Highly porous lignin-based microspheres, modified by magnetite nanoparticles, were used for the first time for the removal of selenate anions, Se(VI), from spiked and real water samples. The influence of experimental conditions: selenate concentration, adsorbent dosage and contact time on the adsorption capacity was investigated in a batch experimental mode. The FTIR, XRD, SEM techniques were used to analyze the structural and morphological properties of the native and exhausted adsorbent. The maximum adsorption capacity was found to be 69.9 mg/g for Se(VI) anions at pH 6.46 from the simulated water samples. The modified natural polymer was efficient in Se(VI) removal from the real (potable) water samples, originated from six cities in the Republic of Serbia, with an overage efficacy of 20%. The regeneration capacity of 61% in one cycle of desorption (0.5 M NaOH as desorption solution) of bio-based adsorbent was gained in this investigation. The examined material demonstrated a significant affinity for Se(VI) oxyanion, but a low potential for multi-cycle material application; consequently, the loaded sorbent could be proposed to be used as a Se fertilizer.
Assuntos
Água Potável , Nanopartículas de Magnetita , Poluentes Químicos da Água , Purificação da Água , Nanopartículas de Magnetita/química , Lignina , Ácido Selênico , Purificação da Água/métodos , Microesferas , Porosidade , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , ÂnionsRESUMO
In this study we synthesized a series of sixteen bis(imino)pyridines (BIPs) starting from 2,6-diaminopyridine and various aromatic aldehydes, and evaluated their antioxidant, antibacterial, antifungal and acetylcholinesterase (AChE) inhibitory activity. The chemical structures were elucidated by FTIR, elemental analysis, ESR and HRMS. 1H and 13C NMR spectra couldn't be acquired due to the formation of stable, carbon-centered radical cations in a solution, as confirmed by ESR spectroscopy and DFT calculations. The in vitro antioxidant potency was evaluated using four assays: free radical scavenging activity (DPPH and ABTS), reducing power and total antioxidant capacity assay. BIPs demonstrated excellent antioxidant properties, and two derivatives proved to be more potent than reference antioxidants (ascorbic acid and Trolox) in all assays. DFT calculations on ωB97XD/6-311++g(d,p) level of theory provided valuable insights into the radical scavenging mechanism of BIPs. For hydroxyl-substituted BIPs, hydrogen atom transfer (HAT) is a predominant mechanism, while the single electron transfer coupled with proton transfer (SET-PT) governs the antioxidant activity of other derivatives. Intramolecular hydrogen bonding (IHB) plays an important role in the mechanism of antioxidant activity as revealed by noncovalent interaction analysis and rotational barrier calculations. The spin density of radical cations is localized on carbon atoms of a pyridine ring, which corroborates with g-factors and multiplicity obtained from ESR analysis. The most potent BIP exhibited moderate inhibitory activity toward AChE (IC50 = 20 ± 4 µM), while molecular docking suggested binding at the peripheral anionic site of AChE with the MMFF94 binding enthalpy of -43.4 kcal/mol. Moderate in vitro antimicrobial activity of BIPs have been determined against several pathogenic bacterial strains: Pseudomonas aeruginosa, Escherichia coli, Enterococcus faecalis, Staphylococcus aureus and clinical isolate of methicillin resistant S. aureus (MRSA). The antifungal activity of BIPs toward Candida albicans was also confirmed. The similarity ensemble approach combined with molecular docking suggested leucyl aminopeptidase as the probable antimicrobial target for the three most potent BIP derivatives.
Assuntos
Anti-Infecciosos/uso terapêutico , Antifúngicos/uso terapêutico , Antioxidantes/uso terapêutico , Inibidores da Colinesterase/uso terapêutico , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Piridinas/síntese química , Piridinas/uso terapêutico , Candida albicans , Humanos , Piridinas/farmacologia , Relação Estrutura-AtividadeRESUMO
The aim of this study is to provide tailored alumina particles suitable for reinforcing the metal matrix film. The sol-gel method was chosen to prepare particles of submicron size and to control crystal structure by calcination. In this study, copper-based metal matrix composite (MMC) films are developed on brass substrates with different electrodeposition times and alumina concentrations. Scanning electron microscopy (FE-SEM) with energy-dispersive spectroscopy (EDS), TEM, and X-ray diffraction (XRD) were used to characterize the reinforcing phase. The MMC Cu-Al2O3 films were synthesized electrochemically using the co-electrodeposition method. Microstructural and topographical analyses of pure (alumina-free) Cu films and the Cu films with incorporated Al2O3 particles were performed using FE-SEM/EDS and AFM, respectively. Hardness and adhesion resistance were investigated using the Vickers microindentation test and evaluated by applying the Chen-Gao (C-G) mathematical model. The sessile drop method was used for measuring contact angles for water. The microhardness and adhesion of the MMC Cu-Al2O3 films are improved when Al2O3 is added. The concentration of alumina particles in the electrolyte correlates with an increase in absolute film hardness in the way that 1.0 wt.% of alumina in electrolytes results in a 9.96% increase compared to the pure copper film, and the improvement is maximal in the film obtained from electrolytes containing 3.0 wt.% alumina giving the film 2.128 GPa, a 134% hardness value of that of the pure copper film. The surface roughness of the MMC film increased from 2.8 to 6.9 times compared to the Cu film without particles. The decrease in the water contact angle of Cu films with incorporated alumina particles relative to the pure Cu films was from 84.94° to 58.78°.
RESUMO
In this study, silicate nanofillers; dicalcium silicate, magnesium silicate, tricalcium silicate, and wollastonite; were synthesized using four different methods and incorporated into the epoxy resin to improve its mechanical properties. Characterization of the newly synthesized nanofillers was performed using Fourier-transformation infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The purpose of this study was to analyze newly developed composite materials reinforced with silicate nanoparticles utilizing tensile testing and a full-field non-contact 3D Digital Image Correlation (DIC) method. Analysis of deformation and displacement fields gives precise material behavior during testing. Testing results allowed a more reliable assessment of the structural integrity of epoxy composite materials reinforced using different silicate nanofillers. It was concluded that the addition of 3% of dicalcium silicate, magnesium silicate, tricalcium silicate, and wollastonite lead to the increasement of tensile strength up to 31.5%, 29.0%, 27.5%, and 23.5% in comparison with neat epoxy, respectively. In order to offer more trustworthy information about the viscoelastic behavior of neat epoxy and composites, a dynamic mechanical analysis (DMA) was also performed and rheological measurements of uncured epoxy matrix and epoxy suspensions were obtained.
RESUMO
Electronic interactions in donor-π-linker-acceptor systems with barbituric acid as an electron acceptor and possible electron donor were investigated to screen promising candidates with a push-pull character based on experimental and quantum chemical studies. The tautomeric properties of 5-benzylidenebarbituric acid derivatives were studied with NMR spectra, spectrophotometric determination of the pKa values, and quantum chemical calculations. Linear solvation energy relationships (LSER) and linear free energy relationships (LFER) were applied to the spectral data - UV frequencies and 13C NMR chemical shifts. The experimental studies of the nature of the ground and excited state of investigated compounds were successfully interpreted using a computational chemistry approach including ab initio MP2 geometry optimization and time-dependent DFT calculations of excited states. Quantification of the push-pull character of barbituric acid derivatives was performed by the 13CNMR chemical shift differences, Mayer π bond order analysis, hole-electron distribution analysis, and calculations of intramolecular charge transfer (ICT) indices. The results obtained show, that when coupled with a strong electron-donor, barbituric acid can act as the electron-acceptor in push-pull systems, and when coupled with a strong electron-acceptor, barbituric acid can act as the weak electron-donor.
RESUMO
Novel highly effective amino-functionalized lignin-based biosorbent in the microsphere geometry (A-LMS) for removal of heavy metal ions, was synthesized via inverse suspension copolymerization of kraft lignin with poly(ethylene imine) grafting-agent and epoxy chloropropane cross-linker. Optimization of A-LMS synthesis, performed with respect to the quantity of sodium alginate emulsifier (1, 5 and 10 wt%), provides highly porous microspheres A-LMS_5, using 5 wt% emulsifier, with 800 ± 80 µm diameter, 7.68 m2 g-1 surface area and 7.7 mmol g-1 of terminal amino groups. Structural and surface characteristics were obtained from Brunauer-Emmett-Teller method, Fourier Transform-Infrared spectroscopy, scanning electron microscopy, X-ray photoelectron spectroscopy and porosity determination. In a batch test, the influence of pH, A-LMS_5 dose, temperature, contact time on adsorption efficiency of Ni2+, Cd2+, As(V) and Cr(VI) ions were studied. The adsorption is spontaneous and feasible with maximum adsorption capacity of 74.84, 54.20, 53.12 and 49.42 mg g-1 for Cd2+, Cr(VI), As(V) and Ni2+ ions, respectively, obtained by using Langmuir model. Modeling of kinetic data indicated fast adsorbate removal rate with pore diffusional transport as rate limiting step (pseudo-second order model and Weber-Morris equations), thus further confirming high performances of produced bio-adsorbent for heavy metal ions removal.
Assuntos
Íons/química , Lignina/química , Metais Pesados/química , Microesferas , Adsorção , Estrutura Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica , Poluentes Químicos da Água/químicaRESUMO
The controllable synthesis of rutile TiO2 single crystal particles with the preferential orientation of {111} facets still remains a scientific and technological challenge. Here, we developed a facile route for fabrication of rutile TiO2 nanorod crystals (RTiO2NRs) having high ratios of oxidative {111} to reductive {110} surfaces. RTiO2NRs were synthesized using a peroxo-titanium complex (PTC) approach, which was controlled by changing the Ti/H2O2 ratio. The thus obtained RTiO2NRs revealed a high tendency to agglomerate through orientation-dependent attachment along the {110} facets. This resulted in an increased {111}/{110} surface ratio and led to a markedly improved photocatalytic activity of RTiO2NR aggregates. The reported findings illustrate the rich potential of the herein proposed facile and energy-efficient synthesis of nanostructured rutile TiO2-based photocatalysts.
RESUMO
This batch and column kinetics study of arsenic removal utilized copper-impregnated natural mineral tufa (T-Cu(A-C)) under three ranges of particle size. Non-competitive kinetic data fitted by the Weber-Morris model and the single resistance mass transfer model, i.e., mass transfer coefficient kfa and diffusion coefficient (Deff) determination, defined intra-particle diffusion as the dominating rate controlling step. Kinetic activation parameters, derived from pseudo-second-order rate constants, showed low dependence on adsorbent geometry/morphology and porosity, while the diffusivity of the pores was significant to removal efficacy. The results of competitive arsenic adsorption in a multi-component system of phosphate, chromate, or silicate showed effective arsenic removal using T-Cu adsorbents. The high adsorption rate-pseudo-second-order constants in the range 0.509-0.789 g mg-1 min-1 for As(V) and 0.304-0.532 g mg1 min1 for As(III)-justified further application T-Cu(A-C) in a flow system. The fixed-bed column adsorption data was fitted using empirical Bohart-Adams, Yoon-Nelson, Thomas, and dose-response models to indicate capacities and breakthrough time dependence on arsenic influent concentration and the flow rate. Pore surface diffusion modeling (PSDM), following bed-column testing, further determined adsorbent capacities and mass transport under applied hydraulic loading rates.
Assuntos
Arsênio/isolamento & purificação , Cobre/química , Minerais/química , Purificação da Água/métodos , Adsorção , Arsênio/química , Cromatos/química , Difusão , Cinética , Fosfatos/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/instrumentaçãoRESUMO
Iron oxide, in the form of magnetite (MG)-functionalized porous wollastonite (WL), was used as an adsorbent for heavy metal ions (cadmium and nickel) and oxyanions (chromate and phosphate) removal from water. The porous WL was synthesized from calcium carbonate and siloxane by controlled sintering process using low molecular weight submicrosized poly(methyl methacrylate) as a pore-forming agent. The precipitation of MG nanoparticles was carried out directly by a polyol-medium solvothermal method or via branched amino/carboxylic acid cross-linker by solvent/nonsolvent method producing WL/MG and WL-γ-APS/MG adsorbents, respectively. The structure/properties of MG functionalized WL was confirmed by applying FTIR, Raman, XRD, Mössbauer, and SEM analysis. Higher adsorption capacities of 73.126, 66.144, 64.168, and 63.456 mg g-1 for WL-γ-APS/MG in relation to WL/MG of 55.450, 52.019, 48.132, and 47.382 mg g-1 for Cd2+, Ni2+, phosphate, and chromate, respectively, were obtained using nonlinear Langmuir model fitting. Adsorption phenomena were analyzed using monolayer statistical physics model for single adsorption with one energy. Kinetic study showed exceptionally higher pseudo-second-order rate constants for WL-γ-APS/MG, e.g., 1.17-13.4 times, with respect to WL/MG indicating importance of both WL surface modification and controllable precipitation of MG on WL-γ-APS.
Assuntos
Compostos de Cálcio/química , Metais Pesados/química , Modelos Químicos , Silicatos/química , Adsorção , Cádmio , Compostos Férricos , Óxido Ferroso-Férrico , Íons , CinéticaRESUMO
The ratios of E/Z isomers of sixteen synthesized 1,3-dihydro-3-(substituted phenylimino)-2H-indol-2-one were studied using experimental and theoretical methodology. Linear solvation energy relationships (LSER) rationalized solvent influence of the solvent-solute interactions on the UV-Vis absorption maxima shifts (νmax) of both geometrical isomers using the Kamlet-Taft equation. Linear free energy relationships (LFER) in the form of single substituent parameter equation (SSP) was used to analyze substituent effect on pKa, NMR chemical shifts and νmax values. Electron charge density was obtained by the use of Quantum Theory of Atoms in Molecules, i.e. Bader's analysis. The substituent and solvent effect on intramolecular charge transfer (ICT) were interpreted with the aid of time-dependent density functional (TD-DFT) method. Additionally, the results of TD-DFT calculations quantified the efficiency of ICT from the calculated charge-transfer distance (DCT) and amount of transferred charge (QCT). The antimicrobial activity was evaluated using broth microdilution method. 3D QSAR modeling was used to demonstrate the influence of substituents effect as well as molecule geometry on antimicrobial activity.
Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Isatina/química , Isatina/farmacologia , Bactérias/efeitos dos fármacos , Isomerismo , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Modelos Moleculares , Relação Quantitativa Estrutura-Atividade , Bases de Schiff , Solventes , Espectrofotometria Ultravioleta , TermodinâmicaRESUMO
The TiO2 based hybrid supports with different functional groups (amino, glutaraldehyde or epoxy) were prepared and their influence on immobilization of dextransucrase (DS) was studied. Novel synthetic route for surface modification of TiO2 with amino and glutaraldehyde groups was developed taking advantage of charge transfer complex (CTC) formation between surface Ti atoms and salicylate-type of ligand (5aminosalicylic acid (5-ASA)). The proposed coordination of 5-ASA to the surface of TiO2 powder and optical properties of CTC was presented. The pristine TiO2 and amino functionalized TiO2 have higher sorption capacity for DS (12.6 and 12.0mgg-1, respectively) compared to glutaraldehyde and epoxy activated supports (9.6 and 9.8mgg-1, respectively). However, immobilized enzyme to either glutaraldehyde or epoxy functionalized TiO2 have almost two times higher expressed activities compared to pristine TiO2 support (258, 235 and 142IUg-1, respectively). Thermal stability of enzyme immobilized on glutaraldehyde and epoxy functionalized supports was studied at 40°C, as well as operational stability under long-run working conditions in repeated cycles. After five cycles, DS imobilized on glutaraldehyde activated support retained almost 70% of its initial expressed activity, while, after five cycles, performance of DS immobilized on epoxy activated support was significantly lower (15%).
Assuntos
Proteínas de Bactérias/química , Enzimas Imobilizadas/química , Glucosiltransferases/química , Leuconostoc mesenteroides/enzimologia , Titânio/químicaRESUMO
The influence of modification and vacuum/supercritical CO2 (scCO2) drying methods on the surface properties, morphology and thermal stability of cellulose nanocrystals (NC) was presented in this study. Introduction of reactive vinyl groups on NC surface was performed by either direct esterification with oleic acid, linseed or sunflower oil fatty acids; or by amidation of maleic acid/ethylene diamine with methyl ester of fatty acid. Obtained modified NC (m-NC) were characterized using FTIR and Raman spectroscopy; and by determination of acid, iodine and ester values. Structural analysis of m-NC showed varieties of forms, from spongy to nanostructural non-uniform layered morphology with observable agglomeration, which confirmed morphology dependence on modification/processing methods Thermogravimetry-MS spectrometry showed different thermal stability and degradation pathways of NC/m-NC. Incorporation of 1 wt% of reactive m-NC in unsaturated polyester lead to high performance nanocomposites and contributed to increase of stress at break in the range from 76 to 93%.
RESUMO
Seven symmetrical 2,6-distyrylpyridines, phenyl-substituted with hydrogen-bond donors, hydrogen-bond acceptors, halogens and hydrophobic moieties were synthesized and their spectroscopic characterization was done. Solvent effects on the absorption and fluorescence spectra were analyzed and quantified using the Kamlet-Taft and Catalán approach. The obtained results were rationalized by comparison of electrostatic potentials of the molecules in the ground and in excited state and by comparison of the frontier molecular orbitals (HOMO and LUMO), derived from quantum-mechanical calculations (HF, DFT, MP2). Analysis of the results revealed an important influence of non-specific (dispersive) interactions on the solvatochromic behavior of the compounds. 1D and 2D NMR data, in silico obtained conformational assembly of the compound, and the NMR analysis of molecular flexibility in solution (NAMFIS), were used to estimate population of conformers and to deconvolute the UV-Vis spectrum of representative derivative; inferring that the conformational assembly is more complex than was assumed in so far published literature data for this class of compounds. Along with this, the emission spectra of the representative compounds were decomposed by the Multivariate Curve Resolution analysis.
Assuntos
Modelos Moleculares , Piridinas/química , Solventes/química , Absorção Fisico-Química , Clorofórmio/química , Elétrons , Conformação Molecular , Análise Multivariada , Espectroscopia de Prótons por Ressonância Magnética , Análise de Regressão , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Eletricidade Estática , TermodinâmicaRESUMO
UV absorption spectra of N-(substituted phenyl)-2-cyanoacetamides have been recorded in the range 200-400 nm in the set of selected solvents. The solute-solvent interactions were analyzed on the basis of linear solvation energy relationships (LSER) concept proposed by Kamlet and Taft. The effects of substituents on the absorption spectra were interpreted by correlation of absorption frequencies with Hammett substituent constant, σ. It was found that substituents significantly change the extent of conjugation. Furthermore, the experimental findings were interpreted with the aid of ab initio B3LYP/6-311G(d,p) method. Electronic energies was calculated by the use of 6-311++G(3df,3pd) methods with standard polarized continuum model (PCM) for inclusion of the solvent effect.
Assuntos
Elétrons , Nitrilas/química , Solventes/química , Espectrofotometria Ultravioleta , Ligação de Hidrogênio , Estrutura MolecularRESUMO
A highly porous calcium carbonate (calcite; sorbent 1) was used as a support for modification with α-FeOOH (calcite/goethite; sorbent 2), α-MnO2 (calcite/α-MnO2; sorbent 3) and α-FeOOH/α-MnO2 (calcite/goethite/α-MnO2; sorbent 4) in order to obtain a cheap hybrid materials for simple and effective arsenate removal from aqueous solutions. The adsorption ability of synthesized adsorbents was studied as a function of functionalization methods, pH, contact time, temperature and ultrasonic treatment. Comparison of the adsorptive effectiveness of synthesized adsorbents for arsenate removal, under ultrasound treatment and classical stirring method, has shown better performance of the former one reaching maximum adsorption capacities of 1.73, 21.00, 10.36 and 41.94 mg g(-1), for sorbents 1-4, respectively. Visual MINTEQ equilibrium speciation modeling was used for prediction of pH and interfering ion influences on arsenate adsorption.
RESUMO
A simple and efficient method for separation and determination of inorganic arsenic (iAs) and organic arsenic (oAs) in drinking, natural and wastewater was developed. If arsenic is present in water prevailing forms are inorganic acids of As(III) and As(V). oAs can be found in traces as monomethylarsenic acid, MMA(V), and dimethylarsenic acid, DMAs(V). Three types of resins: a strong base anion exchange (SBAE) and two hybrid (HY) resins: HY-Fe and HY-AgCl, based on the activity of hydrated iron oxides and a silver chloride were investigated. It was found that the sorption processes (ion exchange, adsorption and chemisorptions) of arsenic species on SBAE (ion exchange) and HY resins depend on pH values of water. The quantitative separation of molecular and ionic forms of iAs and oAs was achieved by SBAE and pH adjustment, the molecular form of As(III) that exists in the water at pH <8.0 was not bonded with SBAE, which was convenient for direct determination of As(III) concentration in the effluent. HY-Fe resin retained all arsenic species except DMAs(V), which makes possible direct measurements of this specie in the effluent. HY-AgCl resin retained all iAs which was convenient for direct determination of oAs species concentration in the effluent. The selective bonding of arsenic species on three types of resins makes possible the development of the procedure for measuring and calculation of all arsenic species in water. In order to determine capacity of resins the preliminary investigations were performed in batch system and fixed bed flow system. Resin capacities were calculated according to breakthrough points in a fixed bed flow system which is the first step in designing of solid phase extraction (SPE) module for arsenic speciation separation and determination. Arsenic adsorption behavior in the presence of impurities showed tolerance with the respect to potential interference of anionic compounds commonly found in natural water. Proposed method was established performing standard procedures: with external standard, certified reference material and standard addition method. Two analytical techniques: the inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectroscopy-hydride generation (AAS-GH) were comparatively applied for the determination of arsenic in all arsenic species in water. ICP-MS detection limit was 0.2 µg L(-1) and relative standard deviation (RSD) of all arsenic species investigated was between 3.5 and 5.1%.
Assuntos
Arsenicais/análise , Cromatografia por Troca Iônica , Poluentes Químicos da Água/análise , Abastecimento de Água/análise , Adsorção , Arsenicais/isolamento & purificação , Compostos Férricos/química , Concentração de Íons de Hidrogênio , Extração em Fase Sólida , Água/química , Poluentes Químicos da Água/isolamento & purificaçãoRESUMO
Mass spectrometry has been applied in order to study the main fragmentation routes of some 4-pyrimidene carboxylic acids. Differences in fragmentation were caused by the nature of the substituent in position 2 of the pyrimidine ring, while the methyl group in position 1, 3 or 6 did not influence the fragmentation route.