RESUMO
Membranes incorporating zwitterionic chemistries have recently emerged as promising candidates for facilitating challenging ion-ion separations. Transport of ions in such membranes predominantly occurs in hydrated nanopores lined with zwitterionic monomers. To shed light on the physics of ion-ion selectivity underlying such materials, we conducted molecular dynamics simulations of sodium halide transport in model nanopores grafted with sulfobetaine methacrylate molecules. Our results reveal that in both functionalized and unfunctionalized nanopores smaller ions prefer to reside near the pore center, while the larger ions tend to reside near the pore walls. An enhancement in the selective transport of larger anions is observed within the unfunctionalized nanopores relative to that in salt-in-water solutions. Upon functionalization of the nanopores with zwitterions (ZIs), the disparities in the anionic distribution profiles within the pores coupled with differences in the anion-ZI interactions result in a slowdown of larger anions relative to smaller anions. Increasing the ZI grafting density exacerbates these effects, further promoting the selective transport of smaller anions. Our results suggest that selectivity toward large anions can be realized by using nanoporous membranes with ZI content that is high enough to facilitate ion/water partitioning into the pores while preserving the characteristic tendency of the unfunctionalized pores to facilitate faster transport of the larger anions. On the other hand, selectivity toward smaller anions can be achieved by targeting ZI content within the pores that is high enough to significantly slow down the transport of large anions but not high enough to hinder the partitioning of ions/water molecules into the pore due to steric effects.
RESUMO
Recent experimental results have demonstrated that zwitterionic ionogel comprised of polyzwitterion (polyZI)-supported lithium salt-doped ionic liquid exhibits improved conductivities and lithium transference numbers than the salt-doped base ionic liquid electrolyte (ILE). However, the underlying mechanisms of such observations remain unresolved. In this work, we pursued a systematic investigation to understand the impact of the polyZI content and salt concentration on the structural and dynamic properties of the poly(MPC) ionogel of our model polyZI ionogel, poly(2-methacryloyloxyethyl phosphorylcholine) [poly(MPC)] supported LiTFSI/N-butyl-N-methylpyrrolidinium TFSI base ionic liquid electrolyte. Our structural analyses show strong lithium-ZI interaction consistent with the physical network characteristic observed in the experiments. An increase in polyZI content leads to an increased fraction of Li+ ions coordinated with the polyZI. In contrast, an increase in salt concentration leads to a decreased fraction of Li+ ions coordinated with the polyZI. The diffusivities of the mobile ions in the poly(MPC) ionogel were found to be lower than the base ILE in agreement with experiments at T > 300 K. Analysis of ion transport mechanisms shows that lithium ions within the poly(MPC) ionogel travel via a combination of structural, vehicular diffusion, as well as hopping mechanism. Finally, the conductivity trend crossover between the poly(MPC) ionogel and the base ILE was rationalized via a temperature study that showed that the base ILE ions are influenced more by the variation of temperature when compared to the poly(MPC) ions.
RESUMO
We used equilibrium and non-equilibrium atomistic simulations to probe the influence of anion chemistry on the true conductivity, dynamical correlations, and ion transport mechanisms in polymeric ionic liquids. An inverse correlation was found between anion self-diffusivities, ionic mobilities, and the anion size for spherical anions. While some larger asymmetric anions had higher diffusivities than smaller spherical anions, their diffusivities and mobilities did not exhibit a direct correlation to the anion volumes. The conductivity and anion dynamical correlations also followed the same trends as displayed by the diffusivity and mobility of anions. All the systems we examined displayed positively correlated motion among anions, suggesting a contribution that enhances the conductivity beyond the ideal Nernst-Einstein value. Analysis of ion transport mechanisms demonstrated very similar hopping characteristics among the spherical anions despite differences in their sizes.
RESUMO
The separation of ions of similar charge is a crucial challenge in many applications, from water treatment to precious metal recovery. Membranes with cross-linked zwitterionic amphiphilic copolymer (ZAC-X) selective layers, which feature self-assembled, zwitterion-lined nanodomains for permeation, offer unique permselectivity between monovalent anions (e.g., Cl-/F-). This has motivated studies on the mechanisms of transport and selectivity in this family of materials. In this study, we conducted molecular dynamics simulations of aqueous salt solutions within zwitterion-functionalized nanopores to elucidate the influence of dipole orientation of the ZI ligands on anion diffusivities, partitioning, and permeabilities. Our model compares systems with contrasting ZI organization: surface-cation-anion (S-ZI+-ZI-, Motif A) and surface-anion-cation (S-ZI--ZI+, Motif B). Our results reveal that Motif A exhibits less pronounced ion pairing due to a spatial separation in the radial profiles of cations and anions. Motif B demonstrates prominent ion pairing for smaller anions owing to their overlap with cation distributions. Further, our potential of mean force profiles reveals that anion partitioning increases with anion size in both ligand motifs, whereas Motif B exhibits significantly higher partitioning selectivity toward larger anions compared to Motif A. Our results for ion diffusivities show that the self-diffusivities of both anions and cations are lower for Motif B compared to Motif A. Such trends in anion partitioning and diffusivities can be explained by differences in the interactions and steric hindrance experienced by the anionic species in Motifs A and B. Finally, our results for anion permselectivity, obtained by combining partitioning and diffusivity, indicate that partitioning trends dominate over diffusivity trends. Consequently, anion permeability increases with anion size, and ligand Motif B yields much higher permselectivity toward larger anions compared to ligand Motif A.
RESUMO
The influence of the water content on ion and water transport mechanisms in polymer membranes under low to moderate hydration conditions remains poorly understood. In this study, we combine ion and water diffusivity (PFG-NMR) measurements with atomistic molecular dynamics simulations to better understand transport processes in hydrated salt-doped poly(ethylene glycol). Above the water percolation threshold, the experimental and simulated diffusivities are in good agreement with the free volume transport models. At low hydration levels, unlike dry systems, ion diffusion cannot be described by polymer segmental dynamics alone. We rationalize such observations by the interplay between ion-water and ion-polymer solvation of cations and between ion-water and cation-anion interactions for anions. Further, we demonstrate that a two-state model combining ion-water solvation and free volume transport can describe water dynamics across the entire hydration range of interest. Our findings provide a more encompassing analysis of ion and water transport in hydrated polyelectrolytes, specifically in the low hydration regime.
RESUMO
Recent experiments have demonstrated that polymeric ionic liquids that share the same cation and anion but possess different architectures can exhibit markedly different conductivity and transference number characteristics when doped with lithium salt. In this study, we used atomistic molecular simulations on polymer chemistries inspired by the experiments to probe the mechanistic origins underlying the competition between conductivity and transference numbers. Our results indicate that the architecture of the polycationic ionic liquid plays a subtle but crucial role in modulating the anion-cation interactions, especially their dynamical coordination characteristics. Chemistries leading to longer-lived anion-cation coordinations relative to lithium-anion coordinations lead to lower conductivities and higher transference numbers. Our results suggest that higher conductivities are accompanied by lower transference numbers and vice versa, revealing that alternative approaches may need to be considered to break this trade-off in salt-doped polyILs.
RESUMO
Recent experiments have revealed that random zwitterionic amphiphilic copolymer (r-ZAC) membranes exhibit excellent Cl-/F- permselectivity circumventing the solubility-diffusivity trade-off. We conducted molecular dynamics simulations to investigate the origin of the experimental results on the transport of sodium halides in r-ZAC membranes. Our results indicate that the enhancement of Cl-/F- diffusivity selectivity in r-ZAC membranes (relative to that in bulk water) stems from the increase in dielectric drag dominating over the increase in Stokes drag, zwitterionic group-induced steric hindrance, and ion-polymer interactions. The importance of dielectric drag is further demonstrated by showing that reduction in ionic charges leads to a complete reversal of the diffusivity selectivity trends. We conclude that leveraging the impact of hydrophilic nanoconfinement on the dynamics of water can be utilized as a strategy to simultaneously augment solubility selectivity and diffusivity selectivity for separations, wherein the flux of the larger ionic species is desired over that of the smaller.
RESUMO
The influence of dynamical ion-ion correlations and ion pairing on salt transport in ion exchange membranes remain poorly understood. In this study, we use the framework of Onsager transport coefficients within atomistic molecular dynamics simulations to study the impact of ion-ion correlated motion on salt transport in hydrated polystyrene sulfonate membranes and compare with the results from aqueous salt solutions. At sufficiently high salt concentrations, cation-anion dynamical correlations exert a significant influence on both salt diffusivities and conductivities. Anion-anion distinct correlations, arising from the imbalance between the concentration of free (mobile) cations and anions, and the retarding effect of the fixed charge groups on cations, proves to be an additional important feature for polymer membranes. Our results demonstrate that dynamical correlations should become an important consideration in experimental measurements of salt diffusivities and conductivities for non-dilute salt solutions in polymer membranes.