RESUMO
We report the effects of oxygen pressure during growth ([Formula: see text]) on the electronic and magnetic properties of PrAlO3 films grown on [Formula: see text]-terminated SrTiO3 substrates. Resistivity measurements show an increase in the sheet resistance as [Formula: see text] is increased. The saturation of the sheet resistance down to 0.3 K is consistent with Kondo theory for [Formula: see text] torr. Resistivity data fits indicate Kondo temperatures of 16-18 K. For the [Formula: see text] sample, we measured a moderate positive magnetoresistance (MR) due to a strong spin-orbit (SO) interaction at low magnetic fields that evolves into a larger negative MR at high fields due to the Kondo effect. Analysis of the MR data permitted the extraction of the SO interaction critical field for the [Formula: see text] torr interface ([Formula: see text] T). We observed high positive MR for the least oxygenated sample, where a fraction of the n-type carriers are derived from oxygen vacancies and possible cation interdiffusion; for this [Formula: see text] torr sample, Hall effect data indicate a thick conducting layer. Its extremely high MR (â¼[Formula: see text]) is attributed to classical behavior due to a distribution of mobilities.
RESUMO
We describe the synthesis, characterization, and use of hybrid nanoparticles with a superparamagnetic iron oxide (SPIO) core and a gold nanoshell. These multifunctional nanoparticles, designated SPIO-Au nanoshells, displayed superparamagnetic characteristics and a significant absorbance in the near-infrared (NIR) region of the electromagnetic spectrum. In addition, they exhibited high transverse relaxivity, r2 , and a large r2/r1 ratio and therefore could be imaged by MRI to obtain T2-weighted images. Moreover, SPIO-Au nanoshells showed efficient photo-thermal effect when exposed to NIR light. The use of SPIO-Au nanoshells, with their combination of unique magnetic and optical properties, should enhance the efficacy of nanoshell-mediated photo-thermal therapy by making it possible to direct more nanoparticles to tumors through the application of external magnetic field and by permitting real-time in vivo MRI imaging of the distribution of the nanoparticles before, during, and after photo-thermal therapy.
RESUMO
The coordination chemistry of the Schiff base polypyrrolic octaaza macrocycle 1 toward late first-row transition metals was investigated. Binuclear complexes with the divalent cations Ni(II), Cu(II), and Zn(II) and with the monovalent cation Cu(I) were prepared and characterized. Air oxidation of the Cu(I) ions in the latter complex to their divalent oxidation state resulted in a change in the coordination mode relative to the macrocycle.
Assuntos
Cobre/química , Níquel/química , Compostos Organometálicos/química , Porfirinas/química , Elementos de Transição/química , Cristalografia por Raios X , Ligantes , Conformação Molecular , Estrutura Molecular , Oxirredução , Bases de Schiff/química , Zinco/químicaRESUMO
New bimetallic copper(I) and copper(II) complexes of dipyrromethane-derived Schiff base macrocycles are reported. Two different structural motifs were identified, providing support for the notion that ligands of this type can support a variety of coordination modes. In the case of the Cu(I) complexes, the metal centers were found to have a distorted tetrahedral geometry and be coordinated to two imine nitrogens on each side of the ligand, with the exact structure depending on the choice of Schiff base macrocycle. In contrast to what is seen for Cu(I), with Cu(II) as the coordinated cation the Cu(II) metal centers assumed distorted square planar geometries, and both pyrrole N-Cu and imine N-Cu interactions were confirmed by single-crystal X-ray diffraction analysis. This structural analysis revealed a copper-copper distance of 3.47 A, while SQUID magnetic susceptibility data provided evidence for antiferromagnetic coupling between the two metal centers.
Assuntos
Cobre/química , Compostos Macrocíclicos/química , Pirróis/química , Bases de Schiff/química , Eletroquímica , Ligantes , Estrutura Molecular , Platina/químicaRESUMO
Self-organized Co nanoplatelets with a singular height, quantized lateral sizes, and unique shape and orientation have been fabricated on a template consisting of ordered Al nanocluster arrays on Si(111)-7 x 7 surfaces. Despite their small volume (a few nm(3)), these nanomagnets exhibit an unusually high blocking temperature (>100 K). The perpendicular direction for easy magnetization, the high blocking temperature, the size tunability, and the epitaxial growth on Si substrates make these nanomagnets important for applications in information technology.