Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
PLoS Pathog ; 20(5): e1011903, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38805551

RESUMO

The common liver fluke (Fasciola hepatica) causes the disease fasciolosis, which results in considerable losses within the global agri-food industry. There is a shortfall in the drugs that are effective against both the adult and juvenile life stages within the mammalian host, such that new drug targets are needed. Over the last decade the stem cells of parasitic flatworms have emerged as reservoirs of putative novel targets due to their role in development and homeostasis, including at host-parasite interfaces. Here, we investigate and characterise the proliferating cells that underpin development in F. hepatica. We provide evidence that these cells are capable of self-renewal, differentiation, and are sensitive to ionising radiation- all attributes of neoblasts in other flatworms. Changes in cell proliferation were also noted during the early stages of in vitro juvenile growth/development (around four to seven days post excystment), which coincided with a marked reduction in the nuclear area of proliferating cells. Furthermore, we generated transcriptomes from worms following irradiation-based ablation of neoblasts, identifying 124 significantly downregulated transcripts, including known stem cell markers such as fgfrA and plk1. Sixty-eight of these had homologues associated with neoblast-like cells in Schistosoma mansoni. Finally, RNA interference mediated knockdown of histone h2b (a marker of proliferating cells), ablated neoblast-like cells and impaired worm development in vitro. In summary, this work demonstrates that the proliferating cells of F. hepatica are equivalent to neoblasts of other flatworm species and demonstrate that they may serve as attractive targets for novel anthelmintics.


Assuntos
Proliferação de Células , Fasciola hepatica , Fasciolíase , Células-Tronco , Animais , Fasciolíase/parasitologia , Diferenciação Celular
2.
J Appl Microbiol ; 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38244225

RESUMO

AIM: Hospital-acquired infections (HAIs) caused by antimicrobial-resistant ESKAPE pathogens are a significant concern for the healthcare industry, with an estimated cost of up to ${\$}$45 billion per year in the US alone. Clostridioides difficile is an additional opportunistic pathogen that also poses a serious threat to immunocompromised patients in hospitals. Infections caused by these pathogens lead to increased hospital stays and repeated readmission, resulting in a significant economic burden. Disinfectants and sporicidals are essential to reduce the risk of these pathogens in hospitals, but commercially available products can have a number of disadvantages including inefficacy, long contact times, short shelf lives, and operator health hazards. In this study we evaluated the effectiveness of Rosin (a natural substance secreted by coniferous trees as a defence mechanism against wounds in tree bark) and its commercial derivative Rosetax-21 as disinfectants and sporicidal against the six ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) and spore preparations from Clostridioides difficile. METHODS AND RESULTS: Both Rosin and Rosetax-21 were tested under simulated clean and dirty conditions (with BSA) against the ESKAPE pathogens, and C. difficile spore preparations. In clean conditions, Rosin (5% weight/volume: w/v) demonstrated significant efficacy against five of the ESKAPE pathogens, with A. baumannii and E. faecium being the most susceptible, and K. pneumoniae the most resistant, showing only a one-log reduction after a 5 min treatment. However, in dirty conditions, all pathogens including K. pneumoniae exhibited at least a 3-log reduction to Rosin within 5 min. Rosetax-21 (5% w/v) was found to be less effective than Rosin in clean conditions, a trend that was exacerbated in the presence of BSA. Additionally, both Rosin and Rosetax-21 at 2.5% (w/v) achieved complete eradication of C. difficile spores when combined with 0.5% glutaraldehyde, though their standalone sporicidal activity was limited. CONCLUSIONS: The findings from this study highlight the potential of Rosin and Rosetax-21 as both bactericidal and sporicidal disinfectants, with their efficacy varying based on the conditions and the pathogens tested. This presents an avenue for the development of novel healthcare disinfection strategies, especially against HAIs caused by antimicrobial-resistant ESKAPE pathogens and C. difficile.

3.
Am J Transplant ; 23(1): 78-83, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36148607

RESUMO

Solid organ transplant recipients (SOTr) remain at risk of severe COVID-19. Several previous early therapies are no longer effective against new circulating variants. We performed a prospective cohort study in outpatient adult SOTr during the omicron BA.2 wave (April-May 2022), to determine the effectiveness of 3 doses of remdesivir given within 7 days of symptoms onset. Patients were followed for at least 30 days. The primary outcome was hospitalization. Of 210 SOTr that had COVID-19, we included 192. The median age was 54.5 years and 61.5% were men. The most common transplants were kidney (41.7%), lung (19.3%), liver (18.8%), and heart (6.3%). Most patients (90.1%) had previously received ≥3 COVID-19 vaccine doses. Fifteen (7.8%) were hospitalized, 5(2.6%) required supplemental oxygen, 3(1.6%) ICU admission, and 2(1%) mechanical ventilation with 2(1%) deaths. Age, the number of comorbidities, prednisone chronic treatment, and lung transplant were risk factors for hospitalization. Early remdesivir significantly decreased the hospitalization rate: adjusted hazard ratio 0.12 (95% CI: 0.03-0.57). The adjusted number needed to treat to prevent one hospitalization was 15.2 (95% CI: 13.6-31.4). No patient that received early remdesivir needed ICU admission or died. In a cohort of SOTr with COVID-19 infection, administration of 3-dose early remdesivir independently reduced the disease severity.


Assuntos
COVID-19 , Transplante de Órgãos , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , COVID-19/etiologia , Tratamento Farmacológico da COVID-19 , Vacinas contra COVID-19 , Unidades de Terapia Intensiva , Pacientes Ambulatoriais , Estudos Prospectivos , SARS-CoV-2 , Transplantados
4.
Clin Infect Dis ; 75(12): 2193-2200, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-35445690

RESUMO

BACKGROUND: Solid organ transplant (SOT) recipients are at high risk for complications from coronavirus disease 2019 (COVID-19) and vaccine breakthrough infections are common. We determined the effectiveness of ≥3 doses of mRNA vaccine and early monoclonal antibody therapy in reducing disease severity against the Omicron (B.1.1.529) variant. METHODS: Prospective cohort study of consecutive SOT recipients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection referred to our transplant center who were followed for at least 30 days. The primary outcome was supplemental oxygen requirement. Effectiveness of sotrovimab and ≥3 vaccine doses was estimated using adjusted risk ratios (RR). RESULTS: Three hundred adult organ transplant recipients were included. Seventy-one patients (24.1%) were hospitalized, 44 (14.9%) required supplemental oxygen, 19 (6.5%) were admitted to the intensive care unit (ICU), 15 (5.1%) required mechanical ventilation (MV), and 13 (4.4%) died. On multivariate analysis, age and multiple comorbidities were risk factors for oxygen requirement. Both receipt of ≥3 vaccine doses prior to SARS-CoV-2 infection and receipt of sotrovimab in the first 7 days of symptom onset was associated with a reduction in the need for supplemental oxygen (RR 0.30 [95% confidence interval {CI}: .17 to .54] and RR 0.24 (95% CI: .1 to .59), respectively]. For sotrovimab, the number needed to treat (NNT) to prevent one patient requiring oxygen was 6.64 (95% CI: 4.56-13.66). Both sotrovimab use and having received ≥3 vaccine doses were also associated with a shorter hospitalization length of stay. CONCLUSIONS: In a cohort of SOT recipients with Omicron variant COVID-19 infection, prior receipt of ≥3 mRNA vaccine doses and early monoclonal antibody therapy were independently associated with significantly reduced disease severity.


Assuntos
COVID-19 , Transplante de Órgãos , Adulto , Humanos , SARS-CoV-2 , Estudos Prospectivos , Vacinação , Oxigênio , Transplantados
5.
Proc Biol Sci ; 288(1961): 20212005, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34702077

RESUMO

Animal-attached devices have transformed our understanding of vertebrate ecology. To minimize any associated harm, researchers have long advocated that tag masses should not exceed 3% of carrier body mass. However, this ignores tag forces resulting from animal movement. Using data from collar-attached accelerometers on 10 diverse free-ranging terrestrial species from koalas to cheetahs, we detail a tag-based acceleration method to clarify acceptable tag mass limits. We quantify animal athleticism in terms of fractions of animal movement time devoted to different collar-recorded accelerations and convert those accelerations to forces (acceleration × tag mass) to allow derivation of any defined force limits for specified fractions of any animal's active time. Specifying that tags should exert forces that are less than 3% of the gravitational force exerted on the animal's body for 95% of the time led to corrected tag masses that should constitute between 1.6% and 2.98% of carrier mass, depending on athleticism. Strikingly, in four carnivore species encompassing two orders of magnitude in mass (ca 2-200 kg), forces exerted by '3%' tags were equivalent to 4-19% of carrier body mass during moving, with a maximum of 54% in a hunting cheetah. This fundamentally changes how acceptable tag mass limits should be determined by ethics bodies, irrespective of the force and time limits specified.


Assuntos
Aceleração , Carnívoros , Animais , Movimento
6.
J Anim Ecol ; 89(1): 161-172, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31173339

RESUMO

It is fundamentally important for many animal ecologists to quantify the costs of animal activities, although it is not straightforward to do so. The recording of triaxial acceleration by animal-attached devices has been proposed as a way forward for this, with the specific suggestion that dynamic body acceleration (DBA) be used as a proxy for movement-based power. Dynamic body acceleration has now been validated frequently, both in the laboratory and in the field, although the literature still shows that some aspects of DBA theory and practice are misunderstood. Here, we examine the theory behind DBA and employ modelling approaches to assess factors that affect the link between DBA and energy expenditure, from the deployment of the tag, through to the calibration of DBA with energy use in laboratory and field settings. Using data from a range of species and movement modes, we illustrate that vectorial and additive DBA metrics are proportional to each other. Either can be used as a proxy for energy and summed to estimate total energy expended over a given period, or divided by time to give a proxy for movement-related metabolic power. Nonetheless, we highlight how the ability of DBA to predict metabolic rate declines as the contribution of non-movement-related factors, such as heat production, increases. Overall, DBA seems to be a substantive proxy for movement-based power but consideration of other movement-related metrics, such as the static body acceleration and the rate of change of body pitch and roll, may enable researchers to refine movement-based metabolic costs, particularly in animals where movement is not characterized by marked changes in body acceleration.


Assuntos
Aceleração , Metabolismo Energético , Animais , Movimento
7.
J Therm Biol ; 88: 102495, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32125983

RESUMO

Individuals and populations possess physiological adaptations to survive local environmental conditions. To occur in different regions where ambient temperature varies, animals must adopt appropriate thermoregulatory mechanisms. Failure to adjust to environmental challenges may result in species distributional range shifts or decreased viability. African mole-rats (Bathyergidae) occupy various habitats in sub-Saharan Africa from deserts to montane regions to mesic coastal areas. We examined thermoregulatory characteristics of three African mole-rat species originating from disparate (montane, savannah, and arid/semi-arid) habitats. Animals were exposed to various ambient temperatures, whilst core body temperature and the surface temperature of different body parts were measured. Oxygen consumption was determined as a measure of heat production. Core body temperatures of Natal (montane) mole-rats (Cryptomys hottentotus natalensis) increased significantly at ambient temperatures >24.5 °C, while those of the highveld (Cryptomys hottentotus pretoriae) (savannah) and Damaraland (Fukomys damarensis) (arid/semi-arid) mole-rats remained within narrower ranges. In terms of surface temperature variation, while pedal surfaces were important in regulating heat loss in Natal and Damaraland mole-rats at high ambient temperatures, the ventral surface was important for heat dissipation in Damaraland and highveld mole-rats. This study provides evidence of the variation and limitations of thermo-physiological mechanisms for three mole-rat species relative to their habitats. Information on physiological adaptations to particular habitats may inform predictive modelling of species movements, declines, and extinctions in response to a changing environment, such as climate change.


Assuntos
Regulação da Temperatura Corporal , Ecossistema , Ratos-Toupeira/fisiologia , Animais , Peso Corporal , Feminino , Masculino , Especificidade da Espécie , Temperatura
8.
J Therm Biol ; 88: 102516, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32125993

RESUMO

Infrared thermography is becoming popular to measure animal surface temperature non-invasively. However, its application in quantitative mammal research is restricted by a paucity of pelage emissivity measurements, which are necessary to acquire accurate temperature readings. Furthermore, the factors influencing pelage emissivity remain largely unknown. We therefore examined the putative links between diet (fat content), hair length, hair diameter, and pelage emissivity in laboratory mice. Individuals maintained on high-fat diets had higher pelage emissivity values than those on standard diets, which may be due to fur being oily and/or the fact that the fur clumped together, exposing the skin underneath. Alternatively, the chemical composition of the fur of individuals on a high-fat diet may vary from those on a standard diet. We found no significant relationships between various hair metrics and emissivity. This study highlights that aspects of an animal's life history (e.g. age, sex, diet) may contribute to the emissivity of its pelage. As such, a single emissivity value may be inappropriate for use in infrared thermography across all species or individuals; other aspects of an animal's biology, which may affect emissivity, should also be considered. Best practice should involve measuring emissivity for every individual animal used in thermography studies.


Assuntos
Pelo Animal/fisiologia , Dieta , Animais , Temperatura Corporal , Raios Infravermelhos , Masculino , Camundongos Endogâmicos C57BL , Termografia
9.
J Anim Ecol ; 88(12): 1973-1985, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31411730

RESUMO

Energy availability and energy use directly influence an organism's life history, fitness and ecological function. In wild animals, abiotic factors such as ambient temperature, season and rainfall, and biotic factors such as body mass, age, social group size and disease status, all potentially influence energy balance. Relatively few studies have examined the effects of disease on the energy expenditure of wild animals. Such studies could further our understanding of factors influencing the transmission of zoonotic diseases. The European badger (Meles meles) is a medium-sized carnivore that occurs in mixed-sex, familial groups across much of its range. In the UK, they are a protected species but are also involved in the epidemiology of bovine tuberculosis (TB) in cattle. We measured the daily energy expenditure (DEE) and resting metabolic rate (RMR) of wild badgers and related this to their TB infection status and a range of other interacting factors including season, group size, disease status, sex, age, body mass and body fat. Individuals were larger and fatter when they were older, and fatter during the winter. Males were also heavier than females during the summer. In addition, individuals from smaller groups that were exposed to TB tended to have lower body mass. There were no direct effects of disease status on DEE or RMR; however, there was a significant interaction whereby DEE increased with body mass in small groups but decreased with body mass in large groups. Results are consistent with the costs of TB infection being met by compensatory mechanisms enabling badgers to survive for extended periods without exhibiting measurable energetic consequences.


Assuntos
Mustelidae , Tuberculose Bovina , Tuberculose , Animais , Animais Selvagens , Bovinos , Feminino , Masculino , Estações do Ano
10.
Anaerobe ; 54: 92-99, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30118894

RESUMO

Clostridium difficile is a spore forming bacterium and the leading cause of colitis and antibiotic associated diarrhoea in the developed world. Effective recovery of spores, particularly in low numbers, is imperative to obtain accurate prevalence data, due to the low number of spores found within non-clinical samples (<20/ml). Through comparison of C. difficile enrichment media, this study showed the importance of selecting an effective enrichment media. Commonly used broths, such as Cooked Meat broth, promote significantly less growth than other available broths such as Brain Heart Infusion broth, BHI. The optimization of BHI using selective antibiotics, moxalactam and norfloxacin, and sodium taurocholate at a concentration of 0.4%, allowed for high growth rate (0.465 h-1), short lag times (<14 h) and recovery of spores at low concentrations. The optimized broth, designated BHIMN-T, out-performed other commonly used broths so can be recommended for future studies.


Assuntos
Meios de Cultura/química , Técnicas Bacteriológicas/métodos , Clostridioides difficile/crescimento & desenvolvimento , Clostridioides difficile/isolamento & purificação , Clostridioides difficile/metabolismo , Infecções por Clostridium/microbiologia , Meios de Cultura/metabolismo , Humanos , Moxalactam/metabolismo , Norfloxacino/metabolismo
12.
PLoS Pathog ; 9(2): e1003169, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23468621

RESUMO

Restrictions on nematicide usage underscore the need for novel control strategies for plant pathogenic nematodes such as Globodera pallida (potato cyst nematode) that impose a significant economic burden on plant cultivation activities. The nematode neuropeptide signalling system is an attractive resource for novel control targets as it plays a critical role in sensory and motor functions. The FMRFamide-like peptides (FLPs) form the largest and most diverse family of neuropeptides in invertebrates, and are structurally conserved across nematode species, highlighting the utility of the FLPergic system as a broad-spectrum control target. flp-32 is expressed widely across nematode species. This study investigates the role of flp-32 in G. pallida and shows that: (i) Gp-flp-32 encodes the peptide AMRNALVRFamide; (ii) Gp-flp-32 is expressed in the brain and ventral nerve cord of G. pallida; (iii) migration rate increases in Gp-flp-32-silenced worms; (iv) the ability of G. pallida to infect potato plant root systems is enhanced in Gp-flp-32-silenced worms; (v) a novel putative Gp-flp-32 receptor (Gp-flp-32R) is expressed in G. pallida; and, (vi) Gp-flp-32R-silenced worms also display an increase in migration rate. This work demonstrates that Gp-flp-32 plays an intrinsic role in the modulation of locomotory behaviour in G. pallida and putatively interacts with at least one novel G-protein coupled receptor (Gp-flp-32R). This is the first functional characterisation of a parasitic nematode FLP-GPCR.


Assuntos
FMRFamida/genética , Inativação Gênica , Proteínas de Helminto/genética , Receptores Acoplados a Proteínas G/genética , Solanum tuberosum/parasitologia , Tylenchoidea/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Sistema Nervoso Central/anatomia & histologia , Sistema Nervoso Central/metabolismo , FMRFamida/metabolismo , Proteínas de Helminto/metabolismo , Interações Hospedeiro-Patógeno/genética , Ligantes , Moduladores de Transporte de Membrana/metabolismo , Dados de Sequência Molecular , Movimento , Doenças das Plantas/parasitologia , RNA Interferente Pequeno/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Solanum tuberosum/metabolismo
14.
Ecol Evol ; 14(5): e11380, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38756684

RESUMO

Observing animals in the wild often poses extreme challenges, but animal-borne accelerometers are increasingly revealing unobservable behaviours. Automated machine learning streamlines behaviour identification from the substantial datasets generated during multi-animal, long-term studies; however, the accuracy of such models depends on the qualities of the training data. We examined how data processing influenced the predictive accuracy of random forest (RF) models, leveraging the easily observed domestic cat (Felis catus) as a model organism for terrestrial mammalian behaviours. Nine indoor domestic cats were equipped with collar-mounted tri-axial accelerometers, and behaviours were recorded alongside video footage. From this calibrated data, eight datasets were derived with (i) additional descriptive variables, (ii) altered frequencies of acceleration data (40 Hz vs. a mean over 1 s) and (iii) standardised durations of different behaviours. These training datasets were used to generate RF models that were validated against calibrated cat behaviours before identifying the behaviours of five free-ranging tag-equipped cats. These predictions were compared to those identified manually to validate the accuracy of the RF models for free-ranging animal behaviours. RF models accurately predicted the behaviours of indoor domestic cats (F-measure up to 0.96) with discernible improvements observed with post-data-collection processing. Additional variables, standardised durations of behaviours and higher recording frequencies improved model accuracy. However, prediction accuracy varied with different behaviours, where high-frequency models excelled in identifying fast-paced behaviours (e.g. locomotion), whereas lower-frequency models (1 Hz) more accurately identified slower, aperiodic behaviours such as grooming and feeding, particularly when examining free-ranging cat behaviours. While RF modelling offered a robust means of behaviour identification from accelerometer data, field validations were important to validate model accuracy for free-ranging individuals. Future studies may benefit from employing similar data processing methods that enhance RF behaviour identification accuracy, with extensive advantages for investigations into ecology, welfare and management of wild animals.

15.
R Soc Open Sci ; 11(1): 230469, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38179074

RESUMO

Climate change is shifting the transmission of parasites, which is determined by host density, ambient temperature and moisture. These shifts can lead to increased pressure from parasites, in wild and domestic animals, and can impact the effectiveness of parasite control strategies. Understanding the interactive effects of climate on host movement and parasite life histories will enable targeted parasite management, to ensure livestock productivity and avoid additional stress on wildlife populations. To assess complex outcomes under climate change, we applied a gastrointestinal nematode transmission model to a montane wildlife-livestock system, based on host movement and changes in abiotic factors due to elevation, comparing projected climate change scenarios with the historic climate. The wildlife host, Alpine ibex (Capra ibex ibex), undergoes seasonal elevational migration, and livestock are grazed during the summer for eight weeks. Total parasite infection pressure was more sensitive to host movement than to the direct effect of climatic conditions on parasite availability. Extended livestock grazing is predicted to increase parasite exposure for wildlife. These results demonstrate that movement of different host species should be considered when predicting the effects of climate change on parasite transmission, and can inform decisions to support wildlife and livestock health.

16.
Biol Lett ; 9(5): 20130620, 2013 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-24004493

RESUMO

Predator-prey interactions are fundamental in the evolution and structure of ecological communities. Our understanding, however, of the strategies used in pursuit and evasion remains limited. Here, we report on the hunting dynamics of the world's fastest land animal, the cheetah, Acinonyx jubatus. Using miniaturized data loggers, we recorded fine-scale movement, speed and acceleration of free-ranging cheetahs to measure how hunting dynamics relate to chasing different sized prey. Cheetahs attained hunting speeds of up to 18.94 m s(-1) and accelerated up to 7.5 m s(-2) with greatest angular velocities achieved during the terminal phase of the hunt. The interplay between forward and lateral acceleration during chases showed that the total forces involved in speed changes and turning were approximately constant over time but varied with prey type. Thus, rather than a simple maximum speed chase, cheetahs first accelerate to decrease the distance to their prey, before reducing speed 5-8 s from the end of the hunt, so as to facilitate rapid turns to match prey escape tactics, varying the precise strategy according to prey species. Predator and prey thus pit a fine balance of speed against manoeuvring capability in a race for survival.


Assuntos
Acinonyx/fisiologia , Comportamento Predatório , Animais
17.
PLoS Negl Trop Dis ; 17(9): e0011663, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37769025

RESUMO

Long non-coding (lnc)RNAs are a class of eukaryotic RNA that do not code for protein and are linked with transcriptional regulation, amongst a myriad of other functions. Using a custom in silico pipeline we have identified 6,436 putative lncRNA transcripts in the liver fluke parasite, Fasciola hepatica, none of which are conserved with those previously described from Schistosoma mansoni. F. hepatica lncRNAs were distinct from F. hepatica mRNAs in transcript length, coding probability, exon/intron composition, expression patterns, and genome distribution. RNA-Seq and digital droplet PCR measurements demonstrated developmentally regulated expression of lncRNAs between intra-mammalian life stages; a similar proportion of lncRNAs (14.2%) and mRNAs (12.8%) were differentially expressed (p<0.001), supporting a functional role for lncRNAs in F. hepatica life stages. While most lncRNAs (81%) were intergenic, we identified some that overlapped protein coding loci in antisense (13%) or intronic (6%) configurations. We found no unequivocal evidence for correlated developmental expression within positionally correlated lncRNA:mRNA pairs, but global co-expression analysis identified five lncRNA that were inversely co-regulated with 89 mRNAs, including a large number of functionally essential proteases. The presence of micro (mi)RNA binding sites in 3135 lncRNAs indicates the potential for miRNA-based post-transcriptional regulation of lncRNA, and/or their function as competing endogenous (ce)RNAs. The same annotation pipeline identified 24,141 putative lncRNAs in F. gigantica. This first description of lncRNAs in F. hepatica provides an avenue to future functional and comparative genomics studies that will provide a new perspective on a poorly understood aspect of parasite biology.

18.
Sci Rep ; 13(1): 2592, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36788237

RESUMO

In the British Isles, the European badger (Meles meles) is thought to be the primary wildlife reservoir of bovine tuberculosis (bTB), an endemic disease in cattle. Test, vaccinate or remove ('TVR') of bTB test-positive badgers, has been suggested to be a potentially useful protocol to reduce bTB incidence in cattle. However, the practice of removing or culling badgers is controversial both for ethical reasons and because there is no consistent observed effect on bTB levels in cattle. While removing badgers reduces population density, it may also result in disruption of their social behaviour, increase their ranging, and lead to greater intra- and inter-species bTB transmission. This effect has been recorded in high badger density areas, such as in southwest England. However, little is known about how TVR affects the behaviour and movement of badgers within a medium density population, such as those that occur in Northern Ireland (NI), which the current study aimed to examine. During 2014-2017, badger ranging behaviours were examined prior to and during a TVR protocol in NI. Nightly distances travelled by 38 individuals were determined using Global Positioning System (GPS) measurements of animal tracks and GPS-enhanced dead-reckoned tracks. The latter was calculated using GPS, tri-axial accelerometer and tri-axial magnetometer data loggers attached to animals. Home range and core home range size were measured using 95% and 50% autocorrelated kernel density estimates, respectively, based on location fixes. TVR was not associated with measured increases in either distances travelled per night (mean = 3.31 ± 2.64 km) or home range size (95% mean = 1.56 ± 0.62 km2, 50% mean = 0.39 ± 0.62 km2) over the four years of study. However, following trapping, mean distances travelled per night increased by up to 44% eight days post capture. Findings differ from those observed in higher density badger populations in England, in which badger ranging increased following culling. Whilst we did not assess behaviours of individual badgers, possible reasons why no differences in home range size were observed include higher inherent 'social fluidity' in Irish populations whereby movements are less restricted by habitat saturation and/or that the numbers removed did not reach a threshold that might induce increases in ranging behaviour. Nevertheless, short-term behavioural disruption from trapping was observed, which led to significant increases in the movements of individual animals within their home range. Whether or not TVR may alter badger behaviours remains to be seen, but it would be better to utilise solutions such as oral vaccination of badgers and/or cattle as well as increased biosecurity to limit bTB transmission, which may be less likely to cause interference and thereby reduce the likelihood of bTB transmission.


Assuntos
Mustelidae , Mycobacterium bovis , Tuberculose Bovina , Animais , Bovinos , Comportamento de Retorno ao Território Vital , Tuberculose Bovina/epidemiologia , Reino Unido/epidemiologia , Densidade Demográfica , Vacinação/veterinária , Reservatórios de Doenças/veterinária
19.
Parasitology ; 139(5): 589-604, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22216952

RESUMO

Almost a decade has passed since the first report of RNA interference (RNAi) in a parasitic helminth. Whilst much progress has been made with RNAi informing gene function studies in disparate nematode and flatworm parasites, substantial and seemingly prohibitive difficulties have been encountered in some species, hindering progress. An appraisal of current practices, trends and ideals of RNAi experimental design in parasitic helminths is both timely and necessary for a number of reasons: firstly, the increasing availability of parasitic helminth genome/transcriptome resources means there is a growing need for gene function tools such as RNAi; secondly, fundamental differences and unique challenges exist for parasite species which do not apply to model organisms; thirdly, the inherent variation in experimental design, and reported difficulties with reproducibility undermine confidence. Ideally, RNAi studies of gene function should adopt standardised experimental design to aid reproducibility, interpretation and comparative analyses. Although the huge variations in parasite biology and experimental endpoints make RNAi experimental design standardization difficult or impractical, we must strive to validate RNAi experimentation in helminth parasites. To aid this process we identify multiple approaches to RNAi experimental validation and highlight those which we deem to be critical for gene function studies in helminth parasites.


Assuntos
Helmintos/genética , Interferência de RNA , Projetos de Pesquisa , Animais , Técnicas de Transferência de Genes , RNA Interferente Pequeno/genética
20.
Mol Biochem Parasitol ; 252: 111526, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36240960

RESUMO

Caenorhabditis elegans is a uniquely powerful tool to aid understanding of fundamental nematode biology. While C. elegans boasts an unrivalled array of functional genomics tools and phenotype bioassays the inherent differences between free-living and parasitic nematodes underscores the need to develop these approaches in tractable parasite models. Advances in functional genomics approaches, including RNA interference and CRISPR/Cas9 gene editing, in the parasitic nematodes Strongyloides ratti and Strongyloides stercoralis provide a unique and timely opportunity to probe basic parasite biology and reveal novel anthelmintic targets in species that are both experimentally and therapeutically relevant pathogens. While Strongyloides functional genomics tools have progressed rapidly, the complementary range of bioassays required to elucidate phenotypic outcomes post-functional genomics remain more limited in scope. To adequately support the exploitation of functional genomic pipelines for studies of gene function in Strongyloides a comprehensive set of species- and parasite-specific quantitative bioassays are required to assess nematode behaviours post-genetic manipulation. Here we review the scope of the current Strongyloides bioassay toolbox, how established Strongyloides bioassays have advanced knowledge of parasite biology, opportunities for Strongyloides bioassay development and, the need for investment in tractable model parasite platforms such as Strongyloides to drive the discovery of novel targets for parasite control.


Assuntos
Nematoides , Parasitos , Strongyloides stercoralis , Animais , Parasitos/genética , Caenorhabditis elegans/genética , Nematoides/genética , Genômica , Bioensaio
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa