Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Mol Carcinog ; 57(10): 1408-1420, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29938829

RESUMO

CREPT (Cell-cycle-related and expression-elevated protein in tumor)/RPRD1B, a novel protein that enhances the transcription of Cyclin D1 to promote cell proliferation during tumorigenesis, was demonstrated highly expressed in most of tumors. However, it remains unclear how CREPT is regulated in colorectal cancers. In this study, we report that miR-383 negatively regulates CREPT expression. We observed that CREPT was up-regulated but the expression of miR-383 was down regulated in both colon cancer cell lines and colon tumor tissues. Intriguingly, we found that enforced expression of miR-383 inhibited the expression of CREPT at both the mRNA and protein level. Using a luciferase reporter, we showed that miR-383 targeted the 3'-UTR of CREPT mRNA directly. Consistently we observed that over expression of miR-383 shortened the half-life of CREPT mRNA in varieties of colorectal cancer cells. Furthermore, restoration of miR-383 inhibited cell growth and colony formation of colon cancer cells accompanied by inhibition of expression of CREPT and related downstream genes. Finally, we demonstrated that stable over expression of miR-383 in colon cancer cells decreased the growth of the tumors. Our results revealed that the abundant expression of CREPT in colorectal cancers is attributed to the decreased level of miR-383. This study shed a new light on the potential therapeutic therapy strategy for colorectal cancers using introduced miRNA.


Assuntos
Proteínas de Ciclo Celular/genética , Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , MicroRNAs/genética , Proteínas de Neoplasias/genética , Regiões 3' não Traduzidas/genética , Idoso , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Colorretais/metabolismo , Feminino , Células HCT116 , Células HEK293 , Células HT29 , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/metabolismo , Estabilidade de RNA/genética
2.
BMC Cancer ; 18(1): 809, 2018 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-30097032

RESUMO

BACKGROUND: The Musashi (MSI) family of RNA-binding proteins is best known for the role in post-transcriptional regulation of target mRNAs. Elevated MSI1 levels in a variety of human cancer are associated with up-regulation of Notch/Wnt signaling. MSI1 binds to and negatively regulates translation of Numb and APC (adenomatous polyposis coli), negative regulators of Notch and Wnt signaling respectively. METHODS: Previously, we have shown that the natural product (-)-gossypol as the first known small molecule inhibitor of MSI1 that down-regulates Notch/Wnt signaling and inhibits tumor xenograft growth in vivo. Using a fluorescence polarization (FP) competition assay, we identified gossypolone (Gn) with a > 20-fold increase in Ki value compared to (-)-gossypol. We validated Gn binding to MSI1 using surface plasmon resonance, nuclear magnetic resonance, and cellular thermal shift assay, and tested the effects of Gn on colon cancer cells and colon cancer DLD-1 xenografts in nude mice. RESULTS: In colon cancer cells, Gn reduced Notch/Wnt signaling and induced apoptosis. Compared to (-)-gossypol, the same concentration of Gn is less active in all the cell assays tested. To increase Gn bioavailability, we used PEGylated liposomes in our in vivo studies. Gn-lip via tail vein injection inhibited the growth of human colon cancer DLD-1 xenografts in nude mice, as compared to the untreated control (P < 0.01, n = 10). CONCLUSION: Our data suggest that PEGylation improved the bioavailability of Gn as well as achieved tumor-targeted delivery and controlled release of Gn, which enhanced its overall biocompatibility and drug efficacy in vivo. This provides proof of concept for the development of Gn-lip as a molecular therapy for colon cancer with MSI1/MSI2 overexpression.


Assuntos
Neoplasias do Colo/tratamento farmacológico , Gossipol/análogos & derivados , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas de Ligação a RNA/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Produtos Biológicos/administração & dosagem , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Gossipol/administração & dosagem , Humanos , Lipossomos/administração & dosagem , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas de Ligação a RNA/genética , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
BMC Cancer ; 15: 166, 2015 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-25879199

RESUMO

BACKGROUND: 17ß-hydroxysteroid dehydrogenase type 10 (HSD10) has been shown to play a protective role in cells undergoing stress. Upregulation of HSD10 under nutrient-limiting conditions leads to recovery of a homeostatic state. Across disease states, increased HSD10 levels can have a profound and varied impact, such as beneficial in Parkinson's disease and harmful in Alzheimer's disease. Recently, HSD10 overexpression has been observed in some prostate and bone cancers, consistently correlating with poor patient prognosis. As the role of HSD10 in cancer remains underexplored, we propose that cancer cells utilize this enzyme to promote cancer cell survival under cell death conditions. METHODS: The proliferative effect of HSD10 was examined in transfected pheochromocytoma cells by growth curve analysis and a xenograft model. Fluctuations in mitochondrial bioenergetics were evaluated by electron transport chain complex enzyme activity assays and energy production. Additionally, the effect of HSD10 on pheochromocytoma resistance to cell death was investigated using TUNEL staining, MTT, and complex IV enzyme activity assays. RESULTS: In this study, we examined the tumor-promoting effect of HSD10 in pheochromocytoma cells. Overexpression of HSD10 increased pheochromocytoma cell growth in both in vitro cell culture and an in vivo xenograft mouse model. The increases in respiratory enzymes and energy generation observed in HSD10-overexpressing cells likely supported the accelerated growth rate observed. Furthermore, cells overexpressing HSD10 were more resistant to oxidative stress-induced perturbation. CONCLUSIONS: Our findings demonstrate that overexpression of HSD10 accelerates pheochromocytoma cell growth, enhances cell respiration, and increases cellular resistance to cell death induction. This suggests that blockade of HSD10 may halt and/or prevent cancer growth, thus providing a promising novel target for cancer patients as a screening or therapeutic option.


Assuntos
3-Hidroxiacil-CoA Desidrogenases/genética , Expressão Gênica , Feocromocitoma/genética , 3-Hidroxiacil-CoA Desidrogenases/metabolismo , Animais , Morte Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Ciclofilinas/metabolismo , Modelos Animais de Doenças , Xenoenxertos , Humanos , Potencial da Membrana Mitocondrial/genética , Camundongos , Mitocôndrias/metabolismo , Biogênese de Organelas , Estresse Oxidativo/genética , Feocromocitoma/metabolismo , Feocromocitoma/patologia , Ligação Proteica , Ratos , Transfecção
4.
Mol Pharm ; 11(11): 4164-78, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25265550

RESUMO

Doxorubicin (DOX) is one of the most commonly used antineoplastic agents, but its clinical application is oftentimes coupled with severe side effects. Selective delivery of DOX to tumors via nanosized drug carrier represents an attractive approach to this problem. Previously, we developed a dual functional nanomicellar carrier, PEG5K-embelin2 (PEG5K-EB2), which was able to deliver paclitaxel (PTX) selectively to tumors and to achieve an enhanced therapeutic effect. In the present study, we examined the utility of PEG5K-EB2 to deliver DOX to tumors. In addition, folic acid (FA) was coupled to the surface of the PEG5K-EB2 micelles (FA-PEG5K-EB2) to further improve the selective targetability of the system. DOX-loaded PEG5K-EB2 micelles were uniformly spherical particles with a diameter of approximately 20 nm. Incorporation of FA had minimal effect on the size of the particles. The DOX loading efficiency was as high as 91.7% and 93.5% for PEG5K-EB2 and FA-PEG5K-EB2, respectively. DOX formulated in PEG5K-EB2 micelles (with or without FA decoration) demonstrated sustained kinetics of DOX release compared to free DOX. FA-PEG5K-EB2 significantly facilitated the intracellular uptake of DOX over free DOX and PEGylated liposomal DOX (Doxil) in breast cancer cells, 4T1.2, and drug resistant cells, NCI/ADR-RES. P-gp ATPase assay showed that PEG5K-EB2 significantly inhibited the function of the P-gp efflux pump. The maximum tolerated dose of DOX-loaded PEG5K-EB2 micelles was 15 mg/kg in mice, which was 1.5-fold greater than that for free DOX. Pharmacokinetics (PK) and biodistribution studies showed that both types of DOX-loaded micelles, especially FA-PEG5K-EB2, were able to significantly prolong the blood circulation time of DOX and facilitate its preferential accumulation at the tumor tissue. Finally, DOX/PEG5K-EB2 mixed micelles demonstrated significantly enhanced tumor growth inhibitory effect with minimal toxicity in comparison to free DOX and Doxil and the antitumor activity was further enhanced after the decoration by folic acid. Our data suggest that FA-PEG5K-EB2 micelles represent a promising DOX delivery system that warrants more study in the future.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Ácido Fólico/química , Nanopartículas/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacocinética , Benzoquinonas/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Sobrevivência Celular , Doxorrubicina/química , Doxorrubicina/farmacocinética , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Micelas , Polietilenoglicóis/química , Distribuição Tecidual , Células Tumorais Cultivadas
6.
Biomacromolecules ; 15(11): 4326-35, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25325795

RESUMO

We have developed a dual-function drug carrier, polyethylene glycol (PEG)-derivatized farnesylthiosalicylate (FTS). Here we report that incorporation of a drug-interactive motif (Fmoc) into PEG5k-FTS2 led to further improvement in both drug loading capacity and formulation stability. Doxorubicin (DOX) formulated in PEG5k-Fmoc-FTS2 showed sustained release kinetics slower than those of DOX loaded in PEG5k-FTS2. The maximum tolerated dose of DOX- or paclitaxel (PTX)-loaded PEG5k-Fmoc-FTS2 was significantly higher than that of the free drug. Pharmacokinetics and biodistribution studies showed that DOX/PEG5k-Fmoc-FTS2 mixed micelles were able to retain DOX in the bloodstream for a significant amount of time and efficiently deliver the drug to tumor sites. More importantly, drug (DOX or PTX)-loaded PEG5k-Fmoc-FTS2 led to superior antitumor activity over other treatments including drugs formulated in PEG5k-FTS2 in breast cancer and prostate cancer models. Our improved dual function carrier with a built-in drug-interactive motif represents a simple and effective system for targeted delivery of anticancer agents.


Assuntos
Antineoplásicos/administração & dosagem , Portadores de Fármacos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Nanocápsulas/administração & dosagem , Animais , Antineoplásicos/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Portadores de Fármacos/metabolismo , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
7.
J Infect Dis ; 203(12): 1753-62, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21606534

RESUMO

BACKGROUND: Chronic hepatitis C virus (HCV)-induced liver fibrosis involves upregulation of transforming growth factor (TGF)-ß and subsequent hepatic stellate cell (HSC) activation. MicroRNAs (miRNAs) regulate HCV infection and HSC activation. METHODS: TaqMan miRNA profiling identified 12 miRNA families differentially expressed between chronically HCV-infected human livers and uninfected controls. To identify pathways affected by miRNAs, we developed a new algorithm (pathway analysis of conserved targets), based on the probability of conserved targeting. RESULTS: This analysis suggested a role for miR-29 during HCV infection. Of interest, miR-29 was downregulated in most HCV-infected patients. miR-29 regulates expression of extracellular matrix proteins. In culture, HCV infection downregulated miR-29, and miR-29 overexpression reduced HCV RNA abundance. miR-29 also appears to play a role in HSCs. Hepatocytes and HSCs contribute similar amounts of miR-29 to whole liver. Both activation of primary HSCs and TGF-ß treatment of immortalized HSCs downregulated miR-29. miR-29 overexpression in LX-2 cells decreased collagen expression and modestly decreased proliferation. miR-29 downregulation by HCV may derepress extracellular matrix synthesis during HSC activation. CONCLUSIONS: HCV infection downregulates miR-29 in hepatocytes and may potentiate collagen synthesis by reducing miR-29 levels in activated HSCs. Treatment with miR-29 mimics in vivo might inhibit HCV while reducing fibrosis.


Assuntos
Hepacivirus/metabolismo , Células Estreladas do Fígado/metabolismo , Hepatite C Crônica/patologia , MicroRNAs/metabolismo , Algoritmos , Colágeno/biossíntese , Regulação para Baixo , Hepacivirus/genética , Hepatócitos/metabolismo , Humanos , Fígado/patologia , RNA Viral/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
Viruses ; 14(8)2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-36016345

RESUMO

The efficacy of HIV pre-exposure prophylaxis (PrEP) is high in men who have sex with men, but much more variable in women, in a manner largely attributed to low adherence. This reduced efficacy, however, could also reflect biological factors. Transmission to women is typically via the female reproductive tract (FRT), and vaginal dysbiosis, genital inflammation, and other factors specific to the FRT mucosa can all increase transmission risk. We have demonstrated that mucosal fibroblasts from the lower and upper FRT can markedly enhance HIV infection of CD4+ T cells. Given the current testing of tenofovir disoproxil fumarate, cabotegravir, and dapivirine regimens as candidate PrEP agents for women, we set out to determine using in vitro assays whether endometrial stromal fibroblasts (eSF) isolated from the FRT can affect the anti-HIV activity of these PrEP drugs. We found that PrEP drugs exhibit significantly reduced antiviral efficacy in the presence of eSFs, not because of decreased PrEP drug availability, but rather of eSF-mediated enhancement of HIV infection. These findings suggest that drug combinations that target both the virus and infection-promoting factors in the FRT-such as mucosal fibroblasts-may be more effective than PrEP alone at preventing sexual transmission of HIV to women.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Minorias Sexuais e de Gênero , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico , Feminino , Fibroblastos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/prevenção & controle , Homossexualidade Masculina , Humanos , Masculino , Vagina
9.
Lab Invest ; 90(12): 1727-36, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20625373

RESUMO

MicroRNAs (miRNAs) are small RNAs that regulate gene expression pathways. Previous studies have shown interactions between hepatitis C virus (HCV) and host miRNAs. We measured miR-122 and miR-21 levels in HCV-infected human liver biopsies relative to uninfected human livers and correlated these with clinical patient data. miR-122 is required for HCV replication in vitro, and miR-21 is involved in cellular proliferation and tumorigenesis. We found that miR-21 expression correlated with viral load, fibrosis and serum liver transaminase levels. miR-122 expression inversely correlated with fibrosis, liver transaminase levels and patient age. miR-21 was induced ∼twofold, and miR-122 was downregulated on infection of cultured cells with the HCV J6/JFH infectious clone, thus establishing a link to HCV. To further examine the relationship between fibrosis and the levels of miR-21 and miR-122, we measured their expression levels in a mouse carbon tetrachloride fibrosis model. As in the HCV-infected patient samples, fibrotic stage positively correlated with miR-21 and negatively correlated with miR-122 levels. Transforming growth factor ß (TGF-ß) is a critical mediator of fibrogenesis. We identified SMAD7 as a novel miR-21 target. SMAD7 is a negative regulator of TGF-ß signaling, and its expression is induced by TGF-ß. To confirm the relationship between miR-21 and the TGF-ß signaling pathway, we measured the effect of miR-21 on a TGF-ß-responsive reporter. We found that miR-21 enhanced TGF-ß signaling, further supporting a relationship between miR-21 and fibrosis. We suggest a model in which miR-21 targeting of SMAD7 could increase TGF-ß signaling, leading to increased fibrogenesis.


Assuntos
Hepatite C Crônica/complicações , Hepatite C Crônica/genética , MicroRNAs/metabolismo , Adulto , Alanina Transaminase/sangue , Aspartato Aminotransferases/sangue , Biópsia , Linhagem Celular , Células Cultivadas , Células Clonais , Regulação para Baixo , Feminino , Fibrose/patologia , Hepacivirus/genética , Hepacivirus/metabolismo , Hepatite C Crônica/patologia , Humanos , Fígado/metabolismo , Fígado/patologia , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Transdução de Sinais/genética , Estatísticas não Paramétricas , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/fisiologia , Carga Viral
10.
Am J Physiol Gastrointest Liver Physiol ; 298(4): G535-41, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20167875

RESUMO

During liver regeneration, normally quiescent liver cells reenter the cell cycle, nonparenchymal and parenchymal cells divide, and proper liver architecture is restored. The gene expression programs regulating these transitions are not completely understood. MicroRNAs are a newly discovered class of small regulatory RNAs that silence messenger RNAs by binding to their 3'-untranslated regions (UTRs). A number of microRNAs, including miR-21, have been shown to be involved in regulation of cell proliferation. We performed partial hepatectomies on mice and allowed the liver to regenerate for 1, 6, 12, 24, and 48 h and 4 and 7 days. We compared the expression of miR-21 in the posthepatectomy liver to the prehepatectomy liver by Northern blot and found that miR-21 was upregulated during the early stages of liver regeneration. NF-kappaB signaling is also activated very early during liver regeneration. It has been previously reported that NF-kappaB upregulates the miR-21 precursor transcript. The predicted miR-21 target, Pellino (Peli1), is a ubiquitin ligase involved in activating NF-kappaB signaling. We observed an inverse correlation between miR-21 and Peli1 mRNA levels during liver regeneration. miR-21 overexpression in cultured cells inhibited a Peli1 3'-UTR luciferase reporter. Using NF-kappaB reporter assays, we determined that miR-21 overexpression inhibits NF-kappaB signaling. In conclusion, miR-21 expression was upregulated during early stages of liver regeneration. Targeting of Peli1 by miR-21 could potentially provide the basis for a negative feedback cycle regulating NF-kappaB signaling.


Assuntos
Regulação da Expressão Gênica/fisiologia , Regeneração Hepática/fisiologia , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Proteínas Nucleares/metabolismo , Transdução de Sinais/fisiologia , Regulação para Cima/fisiologia , Regiões 3' não Traduzidas/genética , Animais , Linhagem Celular , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Genes Reporter/genética , Humanos , Interleucina-6/genética , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Modelos Biológicos , Mutação/genética , NF-kappa B/genética , Proteínas Nucleares/genética , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Transfecção , Ubiquitina-Proteína Ligases
11.
Commun Biol ; 3(1): 193, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32332873

RESUMO

Patients diagnosed with metastatic breast cancer have a dismal 5-year survival rate of only 24%. The RNA-binding protein Hu antigen R (HuR) is upregulated in breast cancer, and elevated cytoplasmic HuR correlates with high-grade tumors and poor clinical outcome of breast cancer. HuR promotes tumorigenesis by regulating numerous proto-oncogenes, growth factors, and cytokines that support major tumor hallmarks including invasion and metastasis. Here, we report a HuR inhibitor KH-3, which potently suppresses breast cancer cell growth and invasion. Furthermore, KH-3 inhibits breast cancer experimental lung metastasis, improves mouse survival, and reduces orthotopic tumor growth. Mechanistically, we identify FOXQ1 as a direct target of HuR. KH-3 disrupts HuR-FOXQ1 mRNA interaction, leading to inhibition of breast cancer invasion. Our study suggests that inhibiting HuR is a promising therapeutic strategy for lethal metastatic breast cancer.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Movimento Celular/efeitos dos fármacos , Proteína Semelhante a ELAV 1/antagonistas & inibidores , Fatores de Transcrição Forkhead/metabolismo , Neoplasias Pulmonares/prevenção & controle , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteína Semelhante a ELAV 1/genética , Proteína Semelhante a ELAV 1/metabolismo , Feminino , Fatores de Transcrição Forkhead/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Invasividade Neoplásica , Transdução de Sinais , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
12.
J Mater Chem B ; 7(31): 4751-4757, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31389969

RESUMO

We developed a novel evaluation method for tumor-targeting characteristics of nanomedicines, average tumor-targeting index (average TTI) and "area under the tumor-targeting index-time curve" (AUTC) were established as the indicators for tumor targeting of nanomedicines based on NIR fluorescence imaging, which helps real-time monitoring of targeting ability and tumor changes in vivo without culling animals.


Assuntos
Carbocianinas/química , Portadores de Fármacos/química , Corantes Fluorescentes/química , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Imagem Óptica/métodos , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Feminino , Gossipol/uso terapêutico , Humanos , Ácido Hialurônico/química , Camundongos SCID , Micelas , Polietilenoimina/química
13.
Hum Gene Ther ; 19(1): 27-38, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18092919

RESUMO

MicroRNAs (miRNAs) are a class of small regulatory RNAs that are thought to regulate the expression of as many as one-third of all human messenger RNAs (mRNAs). miRNAs are thought to be involved in diverse biological processes, including tumorigenesis. Analysis of miRNA levels may have diagnostic implications. Evidence shows that numerous viruses interact with the miRNA machinery, and that a number of viruses encode their own miRNAs. It seems likely that miRNAs will be implicated in many human diseases. Manipulation of miRNA levels by gene therapy provides an attractive new approach for therapeutic development. This review focuses on approaches to manipulate miRNA levels in cells and in vivo, and the implications for gene therapy. Furthermore, we discuss the use of endogenous miRNAs as scaffolds for the expression of RNA interference (RNAi) as well as competition between exogenous RNAi triggers and endogenous miRNAs. Because short interfering RNAs can also act as miRNAs, seed matches with the 3' untranslated regions of genes should be avoided to prevent off-target effects. Last, we discuss the use of miRNAs to avoid immune responses to viral vectors.


Assuntos
Terapia Genética , MicroRNAs/metabolismo , Vetores Genéticos , Humanos , Modelos Biológicos , Modelos Genéticos , Interferência de RNA
14.
Clin Cancer Res ; 11(17): 6116-26, 2005 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16144910

RESUMO

PURPOSE: Epithelial ovarian cancers are thought to arise from flattened epithelial cells that cover the ovarian surface or that line inclusion cysts. During malignant transformation, different histotypes arise that resemble epithelial cells from normal fallopian tube, endometrium, and intestine. This study compares gene expression in serous, endometrioid, clear cell, and mucinous ovarian cancers with that in the normal tissues that they resemble. EXPERIMENTAL DESIGN: Expression of 63,000 probe sets was measured in 50 ovarian cancers, in 5 pools of normal ovarian epithelial brushings, and in mucosal scrapings from 4 normal fallopian tube, 5 endometrium, and 4 colon specimens. Using rank-sum analysis, genes whose expressions best differentiated the ovarian cancer histotypes and normal ovarian epithelium were used to determine whether a correlation based on gene expression existed between ovarian cancer histotypes and the normal tissues they resemble. RESULTS: When compared with normal ovarian epithelial brushings, alterations in serous tumors correlated with those in normal fallopian tube (P = 0.0042) but not in other normal tissues. Similarly, mucinous cancers correlated with those in normal colonic mucosa (P = 0.0003), and both endometrioid and clear cell histotypes correlated with changes in normal endometrium (P = 0.0172 and 0.0002, respectively). Mucinous cancers displayed the greatest number of alterations in gene expression when compared with normal ovarian epithelial cells. CONCLUSION: Studies at a molecular level show distinct expression profiles of different histologies of ovarian cancer and support the long-held belief that histotypes of ovarian cancers come to resemble normal fallopian tube, endometrial, and colonic epithelium. Several potential molecular markers for mucinous ovarian cancers have been identified.


Assuntos
Colo/metabolismo , Endométrio/metabolismo , Tubas Uterinas/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Ovarianas/genética , Adenocarcinoma de Células Claras/genética , Adenocarcinoma de Células Claras/metabolismo , Adulto , Idoso , Biomarcadores Tumorais/metabolismo , Carcinoma Endometrioide/genética , Carcinoma Endometrioide/metabolismo , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Cistadenoma Mucinoso/genética , Cistadenoma Mucinoso/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Neoplasias Epiteliais e Glandulares/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Neoplasias Ovarianas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
Cancer Res ; 64(5): 1655-63, 2004 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-14996724

RESUMO

Disruptions of the p53, retinoblastoma (Rb), and RAS signaling pathways and activation of human telomerase reverse transcriptase (hTERT) are common in human ovarian cancer; however, their precise role in ovarian cancer development is not clear. We thus introduced the catalytic subunit of hTERT, the SV40 early genomic region, and the oncogenic alleles of human HRAS or KRAS into human ovarian surface epithelial cells and examined the phenotype and gene expression profile of those cells. Disruption of p53 and Rb pathway by SV40 early genomic region and hTERT immortalized but did not transform the cells. Introduction of HRAS(V12) or KRAS(V12) into the immortalized cells, however, allowed them to form s.c. tumors after injection into immunocompromised mice. Peritoneal injection of the transformed cells produced undifferentiated carcinoma or malignant mixed Mullerian tumor and developed ascites; the tumor cells are focally positive for CA125 and mesothelin. Gene expression profile analysis of transformed cells revealed elevated expression of several cytokines, including interleukin (IL)-1beta, IL-6, and IL-8, that are up-regulated by the nuclear factor-kappaB pathway, which is known to contribute to the tumor growth of naturally ovarian cancer cells. Incubation with antibodies to IL-1beta or IL-8 led to apoptosis in the ras-transformed cells and ovarian cancer cells but not in immortalized cells that had not been transformed. Thus, the transformed human ovarian surface epithelial cells recapitulated many features of natural ovarian cancer including a subtype of ovarian cancer histology, formation of ascites, CA125 expression, and nuclear factor-kappaB-mediated cytokine activation. These cells provide a novel model system to study human ovarian cancer.


Assuntos
Modelos Animais de Doenças , Neoplasias Ovarianas/etiologia , Animais , Antígenos Transformantes de Poliomavirus/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Citocinas/fisiologia , Proteínas de Ligação a DNA , Feminino , Perfilação da Expressão Gênica , Genes ras , Humanos , Mesotelina , Camundongos , NF-kappa B/fisiologia , Neoplasias Ovarianas/genética , Telomerase/genética
16.
Oncotarget ; 7(10): 11708-23, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26887043

RESUMO

Chemo/radio-therapy resistance to the deadly pancreatic cancer is mainly due to the failure to kill pancreatic cancer stem cells (CSCs). Signal transducer and activator of transcription 3 (STAT3) is activated in pancreatic CSCs and, therefore, may be a valid target for overcoming therapeutic resistance. Here we investigated the potential of STAT3 inhibition in sensitizing pancreatic cancer to chemo/radio-therapy. We found that the levels of nuclear pSTAT3 in pancreatic cancer correlated with advanced tumor grade and poor patient outcome. Liposomal delivery of a STAT3 inhibitor FLLL32 (Lip-FLLL32) inhibited STAT3 phosphorylation and STAT3 target genes in pancreatic cancer cells and tumors. Consequently, Lip-FLLL32 suppressed pancreatic cancer cell growth, and exhibited synergetic effects with gemcitabine and radiation treatment in vitro and in vivo. Furthermore, Lip-FLLL32 reduced ALDH1-positive CSC population and modulated several potential stem cell markers. These results demonstrate that Lip-FLLL32 suppresses pancreatic tumor growth and sensitizes pancreatic cancer cells to radiotherapy through inhibition of CSCs in a STAT3-dependent manner. By targeting pancreatic CSCs, Lip-FLLL32 provides a novel strategy for pancreatic cancer therapy via overcoming radioresistance.


Assuntos
Curcumina/análogos & derivados , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/radioterapia , Fator de Transcrição STAT3/antagonistas & inibidores , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Quimiorradioterapia , Curcumina/administração & dosagem , Curcumina/farmacologia , Desoxicitidina/administração & dosagem , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Feminino , Humanos , Camundongos , Camundongos Nus , Neoplasias Pancreáticas/metabolismo , Tolerância a Radiação , Distribuição Aleatória , Transdução de Sinais , Análise de Sobrevida , Gencitabina
17.
Oncotarget ; 7(3): 3018-32, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26689988

RESUMO

NDN is a maternally imprinted gene consistently expressed in normal ovarian epithelium, is dramatically downregulated in the majority of ovarian cancers. Little or no NDN expression could be detected in 73% of 351 epithelial ovarian cancers. NDN was also downregulated in 10 ovarian cancer cell lines with total loss in 6 of 10. Re-expression of NDN decreased Bcl-2 levels and induced apoptosis, which significantly inhibited ovarian cancer cell growth in cell culture and in xenografts. In addition, re-expression of NDN inhibited cell migration by decreasing actin stress fiber and focal adhesion complex formation through deactivation of Src, FAK and RhoA. Loss of NDN expression in ovarian cancers could be attributed to LOH in 28% of 18 informative cases and to hypermethylation of CpG sites 1 and 2 of NDN promoter in 23% and 30% of 43 ovarian cancers, respectively. Promoter hypermethylation was also found in 5 of 10 ovarian cancer cell lines. Treatment with the demethylating agent 5-aza-2'-deoxycytidine restored NDN expression in 4 of 7 cell lines with enhanced promoter methylation levels. These observations support the conclusion that NDN is an imprinted tumor suppressor gene which affects cancer cell motility, invasion and growth and that its loss of function in ovarian cancer can be caused by both genetic and epigenetic mechanisms.


Assuntos
Metilação de DNA/genética , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Neoplasias Ovarianas/genética , Regiões Promotoras Genéticas/genética , Proteínas Supressoras de Tumor/genética , Animais , Apoptose/genética , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Linhagem Celular Tumoral , Movimento Celular , Ilhas de CpG/genética , Decitabina , Epitélio/metabolismo , Feminino , Quinase 1 de Adesão Focal/metabolismo , Adesões Focais/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Perda de Heterozigosidade/genética , Camundongos , Camundongos Nus , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Ovário/metabolismo , Ovário/patologia , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Fibras de Estresse/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
18.
Oncogene ; 22(19): 2897-909, 2003 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-12771940

RESUMO

Our group recently identified Ras homolog member I (ARHI), a novel maternally imprinted tumor suppressor gene that encodes a 26 kDa GTP-binding protein with high homology to Ras and Rap. Unlike other Ras family members, ARHI exhibits several unusual structural and functional properties. ARHI contains a unique 34 amino-acid extension at the N-terminus, and differs from Ras in residues critical for GTPase activity and in its putative effector domain. Like Ras, ARHI can bind to GTP with high affinity but has low intrinsic GTPase activity. In addition, while Ras is an oncogene, ARHI functions as an inhibitor for cell growth. (32)Phosphorus labeling showed that ARHI is maintained in a constitutively activated GTP-bound state in resting cells, possibly because of impaired GTPase activity. ARHI is associated at the cell membrane through its prenylation at the C-terminal cysteine residue. Mutation of the conserved CAAX box at the C-terminus led to a loss of its membrane association and a decreased ability to inhibit cell growth. Conversion of Ser(51) to Asn decreased GTP binding and reduced ARHI's biological activity. Mutation of Ala(46) to Val increased the ability of ARHI to inhibit cell growth, associated with a further decrease of its intrinsic GTPase activity. Moreover, conversion of residues in ARHI that are conserved in the Ras family for GTPase activity partially restored the GTPase activity in ARHI. Most strikingly, deletion of ARHI's unique N-terminal extension nearly abolished its inhibitory effect on cell growth, suggesting its importance in ARHI's inhibitory function. Thus, ARHI is a unique Ras family member that retains basic small GTPase function, but exhibits many unusual features. In contrast to most other Ras family members, ARHI has a long N-terminal extension, modest GTPase activity, and constitutive GTP binding in resting cells. Furthermore, unlike the Ras oncogene, ARHI inhibits cell growth, and loss of its expression in cells may contribute to the development of breast and ovarian cancers.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias Ovarianas/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Neoplasias da Mama/genética , Regulação para Baixo , Feminino , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Guanosina Trifosfato/metabolismo , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Dados de Sequência Molecular , Neoplasias Ovarianas/genética , Alinhamento de Sequência , Proteínas rho de Ligação ao GTP/genética
19.
Clin Cancer Res ; 10(10): 3291-300, 2004 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-15161682

RESUMO

PURPOSE: Advanced-stage epithelial ovarian cancer has a poor prognosis with long-term survival in less than 30% of patients. When the disease is detected in stage I, more than 90% of patients can be cured by conventional therapy. Screening for early-stage disease with individual serum tumor markers, such as CA125, is limited by the fact that no single marker is up-regulated and shed in adequate amounts by all ovarian cancers. Consequently, use of multiple markers in combination might detect a larger fraction of early-stage ovarian cancers. EXPERIMENTAL DESIGN: To identify potential candidates for novel markers, we have used Affymetrix human genome arrays (U95 series) to analyze differences in gene expression of 41,441 known genes and expressed sequence tags between five pools of normal ovarian surface epithelial cells (OSE) and 42 epithelial ovarian cancers of different stages, grades, and histotypes. Recursive descent partition analysis (RDPA) was performed with 102 probe sets representing 86 genes that were up-regulated at least 3-fold in epithelial ovarian cancers when compared with normal OSE. In addition, a panel of 11 genes known to encode potential tumor markers [mucin 1, transmembrane (MUC1), mucin 16 (CA125), mesothelin, WAP four-disulfide core domain 2 (HE4), kallikrein 6, kallikrein 10, matrix metalloproteinase 2, prostasin, osteopontin, tetranectin, and inhibin] were similarly analyzed. RESULTS: The 3-fold up-regulated genes were examined and four genes [Notch homologue 3 (NOTCH3), E2F transcription factor 3 (E2F3), GTPase activating protein (RACGAP1), and hematological and neurological expressed 1 (HN1)] distinguished all tumor samples from normal OSE. The 3-fold up-regulated genes were analyzed using RDPA, and the combination of elevated claudin 3 (CLDN3) and elevated vascular endothelial growth factor (VEGF) distinguished the cancers from normal OSE. The 11 known markers were analyzed using RDPA, and a combination of HE4, CA125, and MUC1 expression could distinguish tumor from normal specimens. Expression at the mRNA level in the candidate markers was examined via semiquantitative reverse transcription-PCR and was found to correlate well with the array data. Immunohistochemistry was performed to identify expression of the genes at the protein level in 158 ovarian cancers of different histotypes. A combination of CLDN3, CA125, and MUC1 stained 157 (99.4%) of 158 cancers, and all of the tumors were detected with a combination of CLDN3, CA125, MUC1, and VEGF. CONCLUSIONS: Our data are consistent with the possibility that a limited number of markers in combination might identify >99% of epithelial ovarian cancers despite the heterogeneity of the disease.


Assuntos
Biomarcadores Tumorais , Células Epiteliais/citologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Ovarianas/genética , Linhagem Celular Tumoral , Linhagem da Célula , Células Epiteliais/metabolismo , Feminino , GTP Fosfo-Hidrolases/metabolismo , Humanos , Imuno-Histoquímica , Neoplasias/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Neoplasias Ovarianas/metabolismo , Ovário/metabolismo , Prognóstico , RNA/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Resultado do Tratamento , Regulação para Cima
20.
Oncotarget ; 6(14): 12558-73, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25940441

RESUMO

Stem cell marker, Musashi-1 (MSI1) is over-expressed in many cancer types; however the molecular mechanisms involved in MSI1 over-expression are not well understood. We investigated the microRNA (miRNA) regulation of MSI1 and the implications this regulation plays in colorectal cancer. MicroRNA miR-137 was identified as a MSI1-targeting microRNA by immunoblotting and luciferase reporter assays. MSI1 protein was found to be highly expressed in 79% of primary rectal tumors (n=146), while miR-137 expression was decreased in 84% of the rectal tumor tissues (n=68) compared to paired normal mucosal samples. In addition to reduced MSI1 protein, exogenous expression of miR-137 inhibited cell growth, colony formation, and tumorsphere growth of colon cancer cells. Finally, in vivo studies demonstrated that induction of miR-137 can decrease growth of human colon cancer xenografts. Our results demonstrate that miR-137 acts as a tumor-suppressive miRNA in colorectal cancers and negatively regulates oncogenic MSI1.


Assuntos
Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica/genética , MicroRNAs/genética , Proteínas do Tecido Nervoso/genética , Proteínas de Ligação a RNA/genética , Animais , Western Blotting , Neoplasias Colorretais/patologia , Progressão da Doença , Genes Supressores de Tumor , Células HCT116 , Xenoenxertos , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Nus , Proteínas do Tecido Nervoso/biossíntese , Proteínas de Ligação a RNA/biossíntese , Reação em Cadeia da Polimerase em Tempo Real , Análise Serial de Tecidos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa