Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Magn Reson Imaging ; 39(4): 1039-46, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24464912

RESUMO

PURPOSE: To obtain robust estimates of (31) P metabolite content in mouse skeletal muscles using our recently developed MR absolute quantification method and a custom-built (1) H/(31) P dual tuned radiofrequency (RF) coil optimized for mouse leg. MATERIALS AND METHODS: We designed and fabricated a probe consisting of two dual tuned (1) H/(31) P solenoid coils: one leg was inserted to each solenoid. The mouse leg volume coil was incorporated with injector coils for MR absolute quantification. The absolute quantification method uses a synthetic reference signal injection approach and solves several challenges in MR absolute quantification including changes of coil loading and receiver gains. RESULTS: The (1) H/(31) P dual tuned probe was composed of two separate solenoid coils, one for each leg, to increase coil filling factors and signal-to-noise ratio. Each solenoid was equipped with a second coil to allow injection of reference signals. (31) P metabolite concentrations determined for normal mice were well within the expected range reported in the literature. CONCLUSION: We developed an RF probe and an absolute quantification approach adapted for mouse skeletal muscle.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Espectroscopia de Ressonância Magnética/instrumentação , Espectroscopia de Ressonância Magnética/métodos , Magnetismo/instrumentação , Imagem Molecular/instrumentação , Músculo Esquelético/metabolismo , Isótopos de Fósforo/farmacocinética , Animais , Desenho de Equipamento , Análise de Falha de Equipamento , Membro Posterior , Camundongos , Camundongos Endogâmicos C57BL , Prótons , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Transdutores
2.
Pediatr Res ; 75(1-1): 62-6, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24105411

RESUMO

BACKGROUND: The pathophysiology resulting in cerebral edema in pediatric diabetic ketoacidosis (DKA) is unknown. To investigate the changes in white matter microstructure in this disease, we measured diffusion tensor imaging (DTI) parameters, including apparent diffusion coefficient (ADC), fractional anisotropy (FA), and radial and axial diffusivity in children with DKA at two time points during treatment. METHODS: A prospective observational study was conducted at Seattle Children's Hospital, Seattle, WA. Thirty-two children admitted with DKA (pH < 7.3, bicarbonate < 15 mEq/l, glucose > 300 mg/dl, and ketosis; 11.9 ± 3.2 y; and 47% male) were enrolled and underwent two serial paired diffusion magnetic resonance imaging (MRI) scans following hospital admission. Seventeen of the 32 participants had diffusion tensor images of adequate quality for tract-based spatial statistics (TBSS) analysis. RESULTS: TBSS mapping demonstrated main white matter tract areas with a significant increase in FA and areas with a significant decrease in ADC, from the first to the second MRI. Both radial and axial diffusivity terms showed change, with a diffuse pattern of involvement. CONCLUSION: Consistent DTI changes occurred during DKA treatment over a short time frame. These findings describe widespread water diffusion abnormalities in DKA, supporting an association between clinical illness and DTI markers of microstructural change in white matter.


Assuntos
Cetoacidose Diabética/terapia , Adolescente , Criança , Cetoacidose Diabética/diagnóstico , Cetoacidose Diabética/fisiopatologia , Imagem de Tensor de Difusão , Feminino , Humanos , Masculino , Estudos Prospectivos
3.
J Magn Reson Imaging ; 34(6): 1414-21, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22113992

RESUMO

PURPOSE: To demonstrate that, when injecting an artificial reference signal for quantitation purposes, the real and artificial signals can be acquired separately, using a single radiofrequency (RF) channel, with no loss of fidelity. Conversion of MR signals to units of concentration can be simplified by injection of a precalibrated, artificial reference signal, or pseudo-signal. In previous implementations, the pseudo-signal was acquired simultaneously with the real signals arising from the sample and this requires a second, integrated RF channel. MATERIALS AND METHODS: We used in vivo spectroscopy and in vitro imaging measurements to test the validity of the separate acquisition method. RESULTS: There was very strong correlation (r = 0.94; P = 0.02) between the in vivo concentrations determined with separate and simultaneous acquisition methods. The in vitro measurements validated that the separate acquisition method compensates for differences in coil loading conditions as well as the simultaneous acquisition method. CONCLUSION: Separate acquisition eliminates the need for a second RF channel, which allows easier implementation at sites that have only one channel available, and relaxes the constraints on the number and amplitude of pseudo-signals. This flexibility can be exploited to increase the signal to noise ratio of the pseudo-signal and reduce variability when making the conversion to units of concentration.


Assuntos
Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Calibragem , Flúor , Humanos , Imagens de Fantasmas
4.
Pediatr Diabetes ; 12(4 Pt 1): 295-301, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21443581

RESUMO

OBJECTIVE: Diabetic ketoacidosis (DKA) may result in both dehydration and cerebral edema but these processes may have opposing effects on blood pressure. We examined the relationship between dehydration and blood pressure in pediatric DKA. DESIGN: A retrospective review was performed at Seattle Children's Hospital, Seattle, WA. Participants were hospitalized children less than 18 yr. Intervention(s) or main exposure was to patients with DKA (venous pH < 7.3, glucose > 300 mg/dL, HCO(3) < 15 mEq/L, and urinary ketosis). Dehydration was calculated as percent body weight lost at admission compared to discharge. Hypertension (systolic and/or diastolic blood pressure (DBP) percentile > 95%) was defined based on National Heart, Lung, and Blood Institute (NHLBI, 2004) nomograms and hypotension was defined as systolic blood pressure (SBP) <70 + 2 [age]. RESULTS: Thirty-three patients (median 10.9 yr; range 10 months to 17 yr) were included. Fifty-eight percent of patients (19/33) had hypertension on admission before treatment and 82% had hypertension during the first 6 h of admission. None had admission hypotension. Hypertension 48 h after treatment and weeks after discharge was common (28 and 19%, respectively). Based on weight gained by discharge, 27% of patients had mild, 61% had moderate, and 12% presented with severe dehydration. CONCLUSION: Despite dehydration, most children admitted with severe DKA had hypertension.


Assuntos
Edema Encefálico/etiologia , Desidratação/etiologia , Cetoacidose Diabética/fisiopatologia , Hipertensão/etiologia , Adolescente , Pressão Sanguínea , Criança , Feminino , Humanos , Lactente , Masculino , Estudos Retrospectivos
5.
Pediatr Radiol ; 41(10): 1259-65, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21607600

RESUMO

BACKGROUND: MRI is being increasingly used to evaluate tissue relaxation in the setting of iron overload. Diagnostic accuracy is strongly dependent upon the acquisition and analysis methods employed. Typically, a multi-echo train of relaxation data is acquired, the resulting curve is fit using a non-linear (exponential) function, and the derived relaxation time is converted to iron concentration by a calibration formula derived from paired MRI-biopsy samples. A theoretically valid processing alternative is to fit a straight line to the relaxation data after logarithmic transformation (log-linear). This log-linear method is more computationally efficient, allowing a full relaxation map to be generated in near real time. This method is present on all scanner platforms and has been published for use in assessing iron concentration. These factors imply methodological validity. OBJECTIVE: To use in vivo and simulation data to show that log-linear fitting can generate highly erroneous relaxation results in iron-loaded tissues. MATERIALS AND METHODS: After IRB approval, exponential and linear fitting were compared in a cohort of 20 patients being evaluated for hepatic iron overload. Simulation analyses were performed to characterize the main factors impacting derived results. RESULTS: In human subjects, log-linear analyses demonstrated gross deviation from exponential results at a moderate relaxation shortening (T2* ~5 ms). Simulation analyses demonstrated that the discrepancy was caused by noise effects and additional signal components violating mono-exponential function shape. CONCLUSION: Log-linear processing results in increasingly erroneous estimation of T2* with iron-loading. Therefore, this method should not be employed for measurement of relaxation behavior in clinical samples.


Assuntos
Sobrecarga de Ferro/diagnóstico , Hepatopatias/diagnóstico , Imageamento por Ressonância Magnética/métodos , Modelos Estatísticos , Criança , Simulação por Computador , Humanos , Estudos Retrospectivos
6.
Magn Reson Med ; 63(3): 570-3, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20187163

RESUMO

This report describes recent efforts on our continuous development of a synthetic signal injection method for quantification of metabolite content in MR spectroscopy and MRI. Previous work showed that conversion of spectral peaks to quantitative units of metabolite content could be achieved with a calibrated synthetic free induction decay generated by an inductively coupled injection coil. This work demonstrates that calibrated synthetic voxels, injected in the same manner, can be used to quantify metabolite content in real (19)F image voxels. Images of vials containing different concentrations of sodium fluoride (NaF) were converted to units of moles by reference to precalibrated synthetically injected voxels. Additional images of vials containing variable sodium chloride (NaCl) demonstrate that the quantification process is robust and immune to changes in coil loading conditions.


Assuntos
Algoritmos , Flúor/análise , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
7.
J Acoust Soc Am ; 125(4): 2420-31, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19354416

RESUMO

Both mechanically induced acoustic cavitation and thermally induced boiling can occur during high intensity focused ultrasound (HIFU) medical therapy. The goal was to monitor the temperature as boiling was approached using magnetic resonance imaging (MRI). Tissue phantoms were heated for 20 s in a 4.7-T magnet using a 2-MHz HIFU source with an aperture and radius of curvature of 44 mm. The peak focal pressure was 27.5 MPa with corresponding beam width of 0.5 mm. The temperature measured in a single MRI voxel by water proton resonance frequency shift attained a maximum value of only 73 degrees C after 7 s of continuous HIFU exposure when boiling started. Boiling was detected by visual observation, by appearance on the MR images, and by a marked change in the HIFU source power. Nonlinear modeling of the acoustic field combined with a heat transfer equation predicted 100 degrees C after 7 s of exposure. Averaging of the calculated temperature field over the volume of the MRI voxel (0.3 x 0.5 x 2 mm(3)) yielded a maximum of 73 degrees C that agreed with the MR thermometry measurement. These results have implications for the use of MRI-determined temperature values to guide treatments with clinical HIFU systems.


Assuntos
Imageamento por Ressonância Magnética/métodos , Algoritmos , Simulação por Computador , Modelos Teóricos , Dinâmica não Linear , Imagens de Fantasmas , Temperatura , Fatores de Tempo , Ultrassonografia/métodos
8.
J Magn Reson ; 185(1): 94-102, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17175188

RESUMO

This work describes how custom-built gradient coils, designed to generate magnetic fields with amplitudes that vary nonlinearly with position, can be used to reduce the potential for unsafe tissue heating during flow-driven arterial spin labeling processes. A model was developed to allow detailed analysis of the adiabatic excitation process used for flow-driven arterial water stimulation with elimination of tissue signal (FAWSETS) an arterial spin labeling method developed specifically for use in skeletal muscle. The model predicted that, by adjusting the amplitude of the gradient field, the specific absorption rate could be reduced by more than a factor of 6 while still achieving effective labeling. Flow phantom measurements and in vivo measurements from exercising rat hind limb confirmed the accuracy of the model's predictions. The modeling tools were also applied to the more widely used continuous arterial spin labeling (CASL) method and predicted that specially shaped gradients could allow similar reductions in SAR.


Assuntos
Artérias/fisiologia , Velocidade do Fluxo Sanguíneo/fisiologia , Imageamento por Ressonância Magnética/métodos , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/fisiologia , Reologia/métodos , Animais , Artérias/efeitos da radiação , Temperatura Corporal/efeitos da radiação , Dinâmica não Linear , Especificidade de Órgãos , Doses de Radiação , Ratos , Marcadores de Spin
9.
J Magn Reson ; 175(2): 185-92, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15886031

RESUMO

This work describes the use of custom-built gradients to enhance skeletal muscle perfusion measurements acquired with a previously described arterial spin labeling technique known as FAWSETS (flow-driven arterial water stimulation with elimination of tissue signal). Custom-built gradients provide active control of the static magnetic field gradient on which FAWSETS relies for labeling. This allows selective, 180 degrees modulations of the phase of the perfusion component of the signal. Phase cycling can then be implemented to eliminate all extraneous components leaving a signal that exclusively reflects capillary-level perfusion. Gradient-enhancement substantially reduces acquisition time and eliminates the need to acquire an ischemic signal to quantify perfusion. This removes critical obstacles to application of FAWSETS in organs other than skeletal muscle and makes the measurements more desirable for clinical environments. The basic physical principles of gradient-enhancement are demonstrated in flow phantom experiments and in vivo utility is demonstrated in rat hind limb during stimulated exercise.


Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Imagem de Difusão por Ressonância Magnética/instrumentação , Interpretação de Imagem Assistida por Computador/métodos , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/fisiologia , Reologia/métodos , Algoritmos , Artérias/fisiologia , Desenho de Equipamento , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
10.
Transl Oncol ; 7(1): 153-66, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24772219

RESUMO

Pharmacokinetic analysis of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) time-course data allows estimation of quantitative parameters such as K (trans) (rate constant for plasma/interstitium contrast agent transfer), v e (extravascular extracellular volume fraction), and v p (plasma volume fraction). A plethora of factors in DCE-MRI data acquisition and analysis can affect accuracy and precision of these parameters and, consequently, the utility of quantitative DCE-MRI for assessing therapy response. In this multicenter data analysis challenge, DCE-MRI data acquired at one center from 10 patients with breast cancer before and after the first cycle of neoadjuvant chemotherapy were shared and processed with 12 software tools based on the Tofts model (TM), extended TM, and Shutter-Speed model. Inputs of tumor region of interest definition, pre-contrast T1, and arterial input function were controlled to focus on the variations in parameter value and response prediction capability caused by differences in models and associated algorithms. Considerable parameter variations were observed with the within-subject coefficient of variation (wCV) values for K (trans) and v p being as high as 0.59 and 0.82, respectively. Parameter agreement improved when only algorithms based on the same model were compared, e.g., the K (trans) intraclass correlation coefficient increased to as high as 0.84. Agreement in parameter percentage change was much better than that in absolute parameter value, e.g., the pairwise concordance correlation coefficient improved from 0.047 (for K (trans)) to 0.92 (for K (trans) percentage change) in comparing two TM algorithms. Nearly all algorithms provided good to excellent (univariate logistic regression c-statistic value ranging from 0.8 to 1.0) early prediction of therapy response using the metrics of mean tumor K (trans) and k ep (=K (trans)/v e, intravasation rate constant) after the first therapy cycle and the corresponding percentage changes. The results suggest that the interalgorithm parameter variations are largely systematic, which are not likely to significantly affect the utility of DCE-MRI for assessment of therapy response.

11.
Magn Reson Imaging ; 29(4): 497-506, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21333480

RESUMO

When assessing liver iron content using relaxometry, an average relaxation rate (R1, R2 or R2*) is usually determined from a region of interest or the entire liver. This is commonly performed by fitting the signal decay in individual voxels to an appropriate relaxation function. The voxel-level parameters resulting from the fits are combined to determine the average relaxation rate, and an empirically derived calibration curve is used to convert this single value to iron content. The goal of this study was to compare the precision and accuracy of this voxel-wise fitting to an alternative method that relies on first averaging the signals from all voxels within the region of interest and then determining the relaxation rate from a single fit. Systematic differences were observed when both methods were applied to clinical images. Mathematical simulations were employed to determine which method provided more robust estimates of the true relaxation rate. The mathematical simulations were then expanded to include a range of conditions expected in typical relaxometry images. The results show that voxel-wise fitting skews the relaxation rate estimates and increases variance, particularly when the true relaxation rate is moderate to fast, as it would be in liver with high iron content. The potential impact of these results on clinical decisions is discussed.


Assuntos
Fígado/patologia , Imageamento por Ressonância Magnética/métodos , Adolescente , Adulto , Algoritmos , Calibragem , Criança , Pré-Escolar , Simulação por Computador , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Ferro/metabolismo , Masculino , Modelos Teóricos , Reprodutibilidade dos Testes
12.
PLoS One ; 5(12): e15166, 2010 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-21203385

RESUMO

Accurate conversion of magnetic resonance spectra to quantitative units of concentration generally requires compensation for differences in coil loading conditions, the gains of the various receiver amplifiers, and rescaling that occurs during post-processing manipulations. This can be efficiently achieved by injecting a precalibrated, artificial reference signal, or pseudo-signal into the data. We have previously demonstrated, using in vitro measurements, that robust pseudo-signal injection can be accomplished using a second coil, called the injector coil, properly designed and oriented so that it couples inductively with the receive coil used to acquire the data. In this work, we acquired nonlocalized phosphorous magnetic resonance spectroscopy measurements from resting human tibialis anterior muscles and used pseudo-signal injection to calculate the Pi, PCr, and ATP concentrations. We compared these results to parallel estimates of concentrations obtained using the more established phantom replacement method. Our results demonstrate that pseudo-signal injection using inductive coupling provides a robust calibration factor that is immune to coil loading conditions and suitable for use in human measurements. Having benefits in terms of ease of use and quantitative accuracy, this method is feasible for clinical use. The protocol we describe could be readily translated for use in patients with mitochondrial disease, where sensitive assessment of metabolite content could improve diagnosis and treatment.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Espectroscopia de Ressonância Magnética/métodos , Trifosfato de Adenosina/química , Calibragem , Humanos , Modelos Biológicos , Modelos Estatísticos , Músculo Esquelético/metabolismo , Imagens de Fantasmas , Fosfatos/química , Fósforo/química , Reprodutibilidade dos Testes
13.
J Magn Reson ; 194(1): 67-75, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18595750

RESUMO

Conversion of MR signals into units of metabolite concentration requires a very high level of diligence to account for the numerous parameters and transformations that affect the proportionality between the quantity of excited nuclei in the acquisition volume and the integrated area of the corresponding peak in the spectrum. We describe a method that eases this burden with respect to the transformations that occur during and following data acquisition. The conceptual approach is similar to the ERETIC method, which uses a pre-calibrated, artificial reference signal as a calibration factor to accomplish the conversion. The distinguishing feature of our method is that the artificial signal is introduced strictly via induction, rather than radiation. We tested a prototype probe that includes a second RF coil rigidly positioned close to the receive coil so that there was constant mutual inductance between them. The artificial signal was transmitted through the second RF coil and acquired by the receive coil in parallel with the real signal. Our results demonstrate that the calibration factor is immune to changes in sample resistance. This is a key advantage because it removes the cumbersome requirement that coil loading conditions be the same for the calibration sample as for experimental samples. The method should be adaptable to human studies and could allow more practical and accurate quantification of metabolite content.


Assuntos
Espectroscopia de Ressonância Magnética/instrumentação , Magnetismo/instrumentação , Transdutores , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
14.
J Magn Reson Imaging ; 25(5): 1021-7, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17457811

RESUMO

PURPOSE: To develop a noninvasive protocol for measuring local perfusion and metabolic demand in muscle tissue with sufficient sensitivity and time resolution to monitor kinetics at the onset of low-level exercise and during recovery. MATERIALS AND METHODS: Capillary-level perfusion, the critical factor that determines oxygen and substrate delivery to active muscle, was measured by an arterial spin labeling (ASL) technique optimized for skeletal muscle. Phosphocreatine (PCr) kinetics, which signal the flux of oxidative phosphorylation, were measured by (31)P MR spectroscopy. Perfusion and PCr measurements were made in parallel studies before, during, and after three different intensities of low-level, stimulated exercise in rat hind limb. RESULTS: The data reveal close coupling between the perfusion response and PCr changes. The onset and recovery time constants for PCr changes were independent of contractile force over the range of forces studied. Perfusion time constants during both onset of exercise and recovery tended to increase with contractile force. CONCLUSION: These results demonstrate that the protocol implemented can be useful for probing the mechanisms that control skeletal muscle blood flow, the physiological limits to muscle performance, and the causes for the attenuated exercise-induced hyperemia observed in disease states.


Assuntos
Membro Posterior/irrigação sanguínea , Espectroscopia de Ressonância Magnética/métodos , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/metabolismo , Fosfocreatina/metabolismo , Esforço Físico , Animais , Masculino , Ratos , Ratos Sprague-Dawley
15.
NMR Biomed ; 18(5): 322-30, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15884098

RESUMO

Arterial spin labeling (ASL) techniques are now recognized as valid tools for providing accurate measurements of cerebral and cardiac perfusion. The labeling process used with most ASL techniques creates two problems, magnetization transfer (MT) effects and arterial transit time effects, that require compensation. The compensation process limits time resolution and hinders absolute quantification. MT effects are particularly problematic in skeletal muscle because they are large and change rapidly during exercise. The protocol presented here was developed specifically for quantification of perfusion in exercising skeletal muscle. The ASL technique that was implemented, FAWSETS, eliminates MT effects and arterial transit times. Localized, single-voxel perfusion measurements were acquired from rat hind limbs at rest, during ischemia and during three different levels of stimulated exercise. The results demonstrate sufficient sensitivity to determine the time constants for perfusion changes at onset of, and during recovery from, exercise and to distinguish the differences in the amplitude of the perfusion response to different levels of exercise. Additional measurements were conducted to demonstrate insensitivity to MT effects. The exercise protocol is easily adaptable to phosphorous magnetic resonance measurements, allowing the possibility to acquire local measurements of perfusion and metabolism from the same tissue in future experiments.


Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Espectroscopia de Ressonância Magnética/métodos , Contração Muscular/fisiologia , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/fisiologia , Esforço Físico/fisiologia , Animais , Estimulação Elétrica , Teste de Esforço , Membro Posterior/fisiologia , Masculino , Músculo Esquelético/inervação , Ratos , Ratos Sprague-Dawley , Marcadores de Spin
16.
NMR Biomed ; 18(4): 226-34, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15674816

RESUMO

This work discusses the strengths, limitations and validity of a novel arterial spin labeling technique when used specifically to measure perfusion in limb skeletal muscle. The technique, flow-driven arterial water stimulation with elimination of tissue signal (FAWSETS), offers several advantages over existing arterial spin labeling techniques. The primary goal of this study was to determine the perfusion signal response to changes in net hind limb flow that were independently verifiable. The range of perfusate flow was relevant to skeletal muscle during mild to moderate exercise. Localized, single voxel measurements were acquired from a 5 mm-thick slice in the isolated perfused rat hind limb at variable net flow rates. The results show that the perfusion signal is linearly proportional to net hind limb flow with a correlation coefficient of 0.974 (p = 0.0013). FAWSETS is especially well suited for studies of skeletal muscle perfusion, where it eliminates the need to compensate for magnetization transfer and arterial transit time effects. A conceptual discussion of the basic principles underlying these advantages is presented.


Assuntos
Algoritmos , Velocidade do Fluxo Sanguíneo/fisiologia , Imagem de Difusão por Ressonância Magnética/métodos , Interpretação de Imagem Assistida por Computador/métodos , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/fisiologia , Reologia/métodos , Animais , Artérias/fisiologia , Ratos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa