Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(32): 12053-12062, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37527409

RESUMO

Spectrophotometric acid-base titration is a simple and powerful technique to evaluate the properties of proton binding sites of natural organic matter (NOM) at environmentally relevant concentrations. However, it is challenging to quantify the chemical charges (Q) carried by NOM at these concentrations. Based on a previous work, which relates the variation of Q with the specific UV-vis differential absorbance (ΔAλ,pH) at a given wavelength (λ) and pH of a dissolved NOM sample, the present work proposes a method to investigate any NOM sample. It determines specific features in the absorbance spectra attributed to proton-inert chromophores (A0,λ) and to the deprotonation processes of carboxylic (A1,λ) and phenolic groups (A2,λ). It enables to select sample-specific wavelength (λmid), where both these functional groups significantly contribute to the variation of absorbance with pH. The linear regression analysis of Aλmid,pH vs Q for various NOM reference samples evidenced that the sample-specific slope (SNOM) and intercept (INOM) were related to the intrinsic spectroscopic properties of the sample (A0,λmid, A1,λmid, and A2,λmid). This approach can thus be used to approximate the Q values of the NOM samples at environmentally relevant concentrations: a pre-requisite for predicting the fate and behavior of metal ions in natural systems.


Assuntos
Metais , Prótons , Análise Espectral , Espectrofotometria , Íons , Substâncias Húmicas/análise
2.
Environ Sci Technol ; 57(41): 15680-15692, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37796760

RESUMO

Interactions between aqueous Fe(II) and solid Fe(III) oxy(hydr)oxide surfaces play determining roles in the fate of organic contaminants in nature. In this study, the adsorption of nalidixic acid (NA), a representative redox-inactive quinolone antibiotic, on synthetic goethite (α-FeOOH) and akaganéite (ß-FeOOH) was examined under varying conditions of pH and cation type and concentration, by means of adsorption experiments, attenuated total reflectance-Fourier transform infrared spectroscopy, surface complexation modeling (SCM), and powder X-ray diffraction. Batch adsorption experiments showed that Fe(II) had marginal effects on NA adsorption onto akaganéite but enhanced NA adsorption on goethite. This enhancement is attributed to the formation of goethite-Fe(II)-NA ternary complexes, without the need for heterogeneous Fe(II)-Fe(III) electron transfer at low Fe(II) loadings (2 Fe/nm2), as confirmed by SCM. However, higher Fe(II) loadings required a goethite-magnetite composite in the SCM to explain Fe(II)-driven recrystallization and its impact on NA binding. The use of a surface ternary complex by SCM was supported further in experiments involving Cu(II), a prevalent environmental metal incapable of transforming Fe(III) oxy(hydr)oxides, which was observed to enhance NA loadings on goethite. However, Cu(II)-NA aqueous complexation and potential Cu(OH)2 precipitates counteracted the formation of ternary surface complexes, leading to decreased NA loadings on akaganéite. These results have direct implications for the fate of organic contaminants, especially those at oxic-anoxic boundaries.


Assuntos
Compostos Férricos , Compostos de Ferro , Compostos Férricos/química , Ácido Nalidíxico , Compostos de Ferro/química , Minerais/química , Óxido Ferroso-Férrico , Adsorção
3.
Environ Sci Technol ; 56(14): 10494-10503, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35749641

RESUMO

Potentiometric acid-base titration curves collected on humic (nano)particles as a function of pH and salt concentration reflect the electrostatics of the particles and the amount of chemical charges (Q) they carry. In turn, the interpretation of titration data helps quantify their reactivity toward metals provided that both intrinsic chemical and nonspecific electrostatic contributions to proton binding are correctly unraveled. Establishing a titration curve requires several steps, i.e., blank subtraction, relative curve positioning with respect to the electrolyte concentration, and absolute curve positioning achieved by the estimation of particle charge Q0 at low pH. Failure to properly establish each step may lead to the misevaluation of nanoparticle charging behavior. Here, we report (i) a simple procedure to measure and position titration curves for humic substances (HS) versus salt concentration and (ii) an original approach for absolute curve positioning upon the exploitation of proton affinity spectra. The latter do not depend on Q0 and they thus constrain the titration data analysis using the soft Poisson-Boltzmann-based titration (SPBT) formalism for nanoparticles in the thick electric double-layer regime. We illustrate the benefits of our approach by analyzing titration measurements for a large range of humic nanoparticles and by comparing the outcome with results from the literature.


Assuntos
Substâncias Húmicas , Prótons , Domínio Catalítico , Substâncias Húmicas/análise , Concentração de Íons de Hidrogênio , Compostos Orgânicos , Potenciometria
4.
Environ Sci Technol ; 56(4): 2378-2385, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34910456

RESUMO

Various pharmaceutical compounds often coexist in contaminated soils, yet little is known about how their interactions impact their mobility. We here show that two typical antibiotic and anti-inflammatory agents (nalidixic acid (NA) and niflumic acid (NFA)) commonly form dimers at several representative soil- and sediment-building minerals of contrasting composition and structure. Cobinding occurs in the form of a NFA-NA dimer stabilized by hydrogen bonding and van der Waals interactions. Using dynamic column experiments containing goethite-coated sand, we then demonstrated that presorbed NA effectively captured the otherwise weakly binding NFA from solution. Simultaneously injecting NA and NFA to presorbed NA enhanced even further both NA and NFA loadings, thereby altering their transport under flow-through conditions. We also showed that environmental level amounts of natural organic matter can reduce the overall retention in column experiments, yet it does not suppress dimer formation. These environmentally relevant scenarios can be predicted using a new transport model that accounts for kinetics and cobinding reactions of NFA onto NA bound to goethite through metal-bonded, hydrogen-bonded, and outer-sphere complexes. These findings have important implications on assessing the fate of coexisting pharmaceutical compounds under dynamic flow conditions in contaminated soils.


Assuntos
Compostos de Ferro , Adsorção , Antibacterianos , Anti-Inflamatórios , Compostos de Ferro/química , Minerais/química , Ácido Nalidíxico , Ácido Niflúmico , Preparações Farmacêuticas , Solo
5.
Langmuir ; 37(44): 13107-13115, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34714075

RESUMO

Dissolved silicate ions in wet and dry soils can determine the fate of organic contaminants via competitive binding. While fundamental surface science studies have advanced knowledge of binding in competitive systems, little is still known about the ranges of solution conditions, the time dependence, and the molecular processes controlling competitive silicate-organic binding on minerals. Here we address these issues by describing the competitive adsorption of dissolved silicate and of phthalic acid (PA), a model carboxylate-bearing organic contaminant, onto goethite, a representative natural iron oxyhydroxide nanomineral. Using surface complexation thermodynamic modeling of batch adsorption data and chemometric analyses of vibrational spectra, we find that silicate concentrations representative of natural waters (50-1000 µM) can displace PA bound at goethite surfaces. Below pH ∼8, where PA binds, every bound Si atom removes ∼0.3 PA molecule by competing with reactive singly coordinated hydroxo groups (-OH) on goethite. Long-term (30 days) reaction time and a high silicate concentration (1000 µM) favored silicate polymer formation, and increased silicate while decreasing PA loadings. The multisite complexation model predicted PA and silicate binding in terms of the competition for -OH groups without involving PA/silicate interactions, and in terms of a lowering of outer-Helmholtz potentials of the goethite surface by these anions. The model predicted that silicate binding lowered loadings of PA species, and whose two carboxylate groups are hydrogen- (HB) and metal-bonded (MB) with goethite. Vibrational spectra of dried samples revealed that the loss of water favored greater proportions of MB over HB species, and these coexisted with predominantly monomeric silicate species. These findings underscored the need to develop models for a wider range of organic contaminants in soils exposed to silicate species and undergoing wet-dry cycles.

6.
Environ Sci Technol ; 55(11): 7430-7444, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33970606

RESUMO

Cadmium (Cd) isotopes are known to fractionate during complexation with various environmentally relevant surfaces and ligands. Our results, which were obtained using (i) batch experiments at different Cd concentrations, ionic strengths, and pH values, (ii) modeling, and (iii) infrared and X-ray absorption spectroscopies, highlight the preferential enrichment of light Cd isotopes bound to humic acid (HA), leaving the heavier Cd pool preferentially in solution (Δ114/110CdHA-Cd(aq) of -0.15 ± 0.01‰). At high ionic strengths, Cd isotope fractionation mainly depends on its complexation with carboxylic sites. Outer-sphere complexation occurs at equilibrium together with inner-sphere complexation as well as with the change of the first Cd coordination and its hydration complexes in solution. At low ionic strengths, nonspecific Cd binding induced by electrostatic attractions plays a dominant role and promotes Cd isotope fractionation during complexation. This significant outcome elucidates the mechanisms involved in HA-Cd interactions. The results can be used during (i) fingerprinting the available Cd in soil solution after its complexation with solid or soluble natural organic matter and (ii) evaluating the contribution of Cd complexation with organic ligands and phytoplankton-derived debris versus Cd assimilation by phytoplankton in seawater.


Assuntos
Substâncias Húmicas , Poluentes do Solo , Cádmio/análise , Isótopos , Solo , Poluentes do Solo/análise
7.
Environ Res ; 191: 110187, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32919970

RESUMO

The fractionation of natural organic matter (NOM) and its impact on the binding of quinolones to mineral surfaces and transport behavior under flow-through conditions have been scarcely investigated. In this study, the sorption and transport of a widely used quinolone antibiotic, Nalidixic acid (NA), were investigated in goethite-coated sand (GCS) columns over a wide concentration range (5-50 mg/L) of Leonardite humic acid (LHA), a representative NOM. Simultaneous injection of NA and LHA in GCS columns mutually alter transport of each other, i.e. NA mobility and LHA molecular fractionation. Preloading of GCS column with LHA dramatically facilitated the transport behavior of NA, where nonspecific interactions with LHA-covered goethite surfaces controlled NA mobility. Simulations using a two-site nonequilibrium model showed that a modified sorption rate constant was required to accurately describe the breakthrough curves of NA under these conditions. This altered rate constant suggests that nonspecific interactions of NA on bound LHA may take place as an additional binding mechanism affecting adsorption kinetics. NOM fractionation alters sorption mechanisms and kinetics of quinolone antibiotics, which in turn affect their fractionation. These results may have important implications for an accurate assessment of the fate of these types of antibiotics in aquatic environments.


Assuntos
Compostos de Ferro , Ácido Nalidíxico , Adsorção , Substâncias Húmicas , Minerais
8.
Environ Sci Technol ; 53(3): 1130-1138, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30576106

RESUMO

The assessment of antibiotics mobility under seawater conditions has been rarely studied, as an accurate description of such multicomponent systems is quite challenging. In this study, the adsorption of a widely used quinolone antibiotic in aquaculture, Oxolinic acid (OA), to a synthetic goethite (α-FeOOH) was examined in the presence of major (e.g., Mg2+, SO42-) and trace (e.g., Cu2+) ions naturally occurring in seawater. The OA adsorption can be successfully predicted using a charge distribution multisite complexation model (CD-MUSIC) coupled with the three plane model (TPM). This modeling approach allowed a quantification of the competitive and synergetic effects of different ions in seawater over a large range of environmentally relevant conditions. In addition, the transport of OA in flow-through columns can be well predicted through coupling hydrodynamic parameters and surface complexation constants obtained under seawater conditions. These results may have strong implications for assessment and prediction of the fate of quinolones in sediment-seawater interface systems.


Assuntos
Compostos de Ferro , Adsorção , Antibacterianos , Minerais , Água do Mar
9.
Environ Sci Technol ; 52(2): 467-473, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29215874

RESUMO

While the magnetite stoichiometry (i.e., Fe(II)/Fe(III) ratio) has been extensively studied for the reductive transformation of chlorinated or nitroaromatic compounds, no work exists examining the influence of stoichiometry of magnetite on its binding properties. This study, for the first time, demonstrates that the stoichiometry strongly affects the capacity of magnetite to bind not only quinolone antibiotics such as nalidixic acid (NA) and flumequine (FLU), but also salicylic acid (SA), natural organic matter (humic acid, HA), and dissolved silicates. Fe(II)-amendment of nonstoichiometric magnetite (Fe(II)/Fe(III) = 0.40) led to similar sorbed amounts of NA, FLU, SA, silicates or HA as compared to the stoichiometric magnetite (i.e., Fe(II)/Fe(III) = 0.50). At any pH between 6 and 10, all magnetites exhibiting similar Fe(II)/Fe(III) ratio in the solid phase showed similar adsorption properties for NA or FLU. This enhancement in binding capability of magnetite for NA is still observed in the presence of environmentally relevant ligands (e.g., 10 mg L-1 of HA or 100 µM of silicates). Using surface complexation modeling, it was shown that the NA-magnetite complexation constant does not vary with Fe(II)/Fe(III) between 0.24 and 0.40, but increases by 8 orders of magnitude when Fe(II)/Fe(III) increases from 0.40 to 0.50.


Assuntos
Óxido Ferroso-Férrico , Ferro , Adsorção , Compostos Férricos , Substâncias Húmicas , Oxirredução , Silicatos
10.
Environ Sci Technol ; 51(20): 11617-11624, 2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-28902498

RESUMO

Although emerging contaminants rarely exist individually in environmental contaminated systems, only limited information on their adsorption mechanisms in multicomponent solutions is currently available. To address this shortcoming, this work examines for the first time the accuracy of a surface complexation model in predicting the cooperative adsorption of nalidixic acid (NA) and niflumic acid (NFA) at goethite (α-FeOOH) surfaces. Our model adequately predicts cobinding of an outer-sphere (OS) complex of NFA onto NA bound to goethite through metal-bonded (MB), hydrogen-bonded (HB), or OS complexes. More positive charge is introduced in the system via sodium interactions in order to describe the NFA adsorption at high NaCl concentrations in both single and binary systems. Our model confidently predicts multilayers of NA on goethite as well as NFA binding on goethite-bound NA over a large range of pH and salinity values as well as NA and NFA loadings. These findings have strong implications in the assessment and prediction of contaminant fate in multicomponent contaminated systems by invoking a nontraditional form of ligand-ligand interaction in this field of study.


Assuntos
Modelos Teóricos , Preparações Farmacêuticas/química , Adsorção , Concentração de Íons de Hidrogênio , Compostos de Ferro , Minerais , Ácido Nalidíxico , Ácido Niflúmico
11.
Environ Sci Technol ; 51(15): 8343-8349, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28671840

RESUMO

The emergence of antibiotic and anti-inflammatory agents in aquatic and terrestrial systems is becoming a serious threat to human and animal health worldwide. Because pharmaceutical compounds rarely exist individually in nature, interactions between various compounds can have unforeseen effects on their binding to mineral surfaces. This work demonstrates this important possibility for the case of two typical antibiotic and anti-inflammatory agents (nalidixic acid (NA) and niflumic acid (NFA)) bound at goethite (α-FeOOH) used as a model mineral surface. Our multidisciplinary study, which makes use of batch sorption experiments, vibration spectroscopy and periodic density functional theory calculations, reveals enhanced binding of the otherwise weakly bound NFA caused by unforeseen intermolecular interactions with mineral-bound NA. This enhancement is ascribed to the formation of a NFA-NA dimer whose energetically favored formation (-0.5 eV compared to free molecules) is predominantly driven by van der Waals interactions. A parallel set of efforts also showed that no cobinding occurred with sulfamethoxazole (SMX) because of the lack of molecular interactions with coexisting contaminants. As such, this article raises the importance of recognizing drug cobinding, and lack of cobinding, for predicting and developing policies on the fate of complex mixtures of antibiotics and anti-inflammatory agents in nature.


Assuntos
Compostos de Ferro , Minerais , Adsorção , Água
12.
Environ Sci Technol ; 50(2): 660-8, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26678217

RESUMO

Oxolinic acid (OA) is a widely used quinolone antibiotic in aquaculture. In this study, its interactions with synthetic goethite (α-FeOOH) and akaganéite (ß-FeOOH) particle surfaces were monitored to understand the potential fate of OA in marine sediments where these phases occur. Batch sorption experiments, liquid chromatography (LC) analyses of supernatants, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy and multisite complexation (MUSIC) modeling were used to monitor OA binding at these particle surfaces. Both LC and ATR-FTIR showed that adsorption did not degrade OA, and that OA adsorption was largely unaffected by NaCl concentrations (10-1000 mM). This was explained further by ATR-FTIR suggesting the formation of metal-bonded complexes at circumneutral to low pHc = -log [H(+)] and with a strongly hydrogen-bonded complex at high pHc. The stronger OA binding to akaganéite can be explained both by the higher isoelectric point/point-of-zero charge (9.6-10) of this mineral than of goethite (9.1-9.4), and an additional OA surface complexation mechanism at the (010) plane. Geminal sites (≡Fe(OH2)2(+)) at this plane could be especially reactive for metal-bonded complexes, as they facilitate a mononuclear six-membered chelate complex via the displacement of two hydroxo/aquo groups at the equatorial plane of a single Fe octahedron. Collectively, these findings revealed that Fe-oxyhydroxides may strongly contribute to the fate and transport of OA-type antibacterial agents in marine sediments and waters.


Assuntos
Antibacterianos/química , Compostos Férricos/química , Sedimentos Geológicos/análise , Compostos de Ferro/química , Minerais/química , Ácido Oxolínico/química , Poluentes Químicos da Água/química , Adsorção , Modelos Químicos
13.
Environ Sci Technol ; 50(4): 2092-8, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26793996

RESUMO

The geochemical behavior of Pu strongly depends on its redox speciation. In this study, we investigated Pu sorption onto Na-illite, a relevant component of potential host rocks for high-level nuclear waste repositories, under anaerobic conditions. When contacting Pu (85% Pu(IV), 11% Pu(V), and 4% Pu(III); 8 × 10(-11) < [Pu]tot/M < 10(-8)) with illite in 0.1 M NaCl at pH between 3 and 10, Pu uptake was characterized by log Rd > 4 (Rd: distribution coefficient in L kg(-1)). Small amounts of aqueous Pu(V) were detected in solution on contact with illite after 1 week, which is not expected to be stable at the measured redox potentials (Eh) in our experiments. This observation suggests time-dependent reduction of Pu(V) to Pu(IV). After one year, log Rd values had increased compared to those after 1 week due to the reduction of weakly adsorbing Pu(V). For pH < 5, Pu(IV) and Pu(III) coexisted in solution under our experimental conditions, showing that Pu(IV) reduction to Pu(III) occurred in the illite suspension. Taking (i) surface complexation constants determined for Eu(III)-illite interaction (with redox-insensitive Eu(III) as a chemical analogue to Pu(III)), (ii) the known constant for Pu(III)-Pu(IV) redox transition, and (iii) measured Eh and pH, overall Pu uptake was well-predicted.


Assuntos
Minerais/química , Plutônio/química , Resíduos Radioativos , Adsorção , Európio/química , Oxirredução , Cloreto de Sódio/química , Instalações de Eliminação de Resíduos
14.
Anal Chem ; 87(19): 9786-94, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26333389

RESUMO

The long-term safety assessment for nuclear waste repositories requires a detailed understanding of actinide (geo)chemistry. Advanced analytical tools are required to gain insight into actinide speciation in a given system. The geochemical conditions in the vicinity of a nuclear repository control the redox state of radionuclides, which in turn has a strong impact on their mobility. Besides the long-lived radionuclides plutonium (Pu) and neptunium (Np), which are key elements in high level nuclear waste, iron (Fe) represents a main component in natural systems controlling redox-related geochemical processes. Measuring the oxidation state distribution for redox sensitive radionuclides and other metal ions is challenging at trace concentrations below the detection limit of most available spectroscopic methods (≥10(-6) M). Consequently, ultrasensitive new analytical techniques are required. Capillary electrophoresis (CE) is a suitable separation method for metal cations. CE hyphenated to inductively coupled plasma sector field mass spectrometry (CE-ICP-SF-MS) was used to measure the redox speciation of Pu (III, IV, V, VI), Np (IV, V, VI), and Fe (II, III) at concentrations lower than 10(-7) M. CE coupling and separation parameters such as sample gas pressure, make up flow rate, capillary position, auxiliary gas flow, as well as the electrolyte system were optimized to obtain the maximum sensitivity. We obtain detection limits of 10(-12) M for Np and Pu. The various oxidation state species of Pu and Np in different samples were separated by application of an acetate-based electrolyte system. The separation of Fe (II) and Fe (III) was investigated using different organic complexing ligands, EDTA, and o-phenanthroline. For the Fe redox system, a limit of detection of 10(-8) M was calculated. By applying this analytical system to sorption studies, we were able to underline previously published results for the sorption behavior of Np in highly diluted concentrations, and we monitored the time-dependent reduction of Pu(VI) by Fe(II). This study clearly shows that CE-ICP-SF-MS is a suitable separation method for the redox states of Pu, Np, and Fe.

15.
Geochem Trans ; 15: 9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25045321

RESUMO

We have studied the impact of dissolved aluminum on interfacial properties of two aluminum bearing minerals, corundum and kaolinite. The effect of intentionally adding dissolved aluminum on electrokinetic potential of basal plane surfaces of sapphire was studied by streaming potential measurements as a function of pH and was complemented by a second harmonic generation (SHG) study at pH 6. The electrokinetic data show a similar trend as the SHG data, suggesting that the SHG electric field correlates to zeta-potential. A comparable study was carried out on kaolinite particles. In this case electrophoretic mobility was measured as a function of pH. In both systems the addition of dissolved aluminum caused significant changes in the charging behavior. The isoelectric point consistently shifted to higher pH values, the extent of the shift depending on the amount of aluminum present or added. The experimental results imply that published isoelectric points of clay minerals may have been affected by this phenomenon. The presence of dissolved aluminum in experimental studies may be caused by particular pre-treatment methods (such as washing in acids and subsequent adsorption of dissolved aluminum) or even simply by starting a series of measurements from extreme pH (causing dissolution), and subsequently varying the pH in the very same batch. This results in interactions of dissolved aluminum with the target surface. A possible interpretation of the experimental results could be that at low aluminum concentrations adatoms of aluminum (we will refer to adsorbed mineral constituents as adatoms) can form at the sapphire basal plane, which can be rather easily removed. Simultaneously, once the surface has been exposed to sufficiently high aluminum concentration, a visible change of the surface is seen by AFM which is attributed to a surface precipitate that cannot be removed under the conditions employed in the current study. In conclusion, whenever pre-treatment or the starting point of an experiment favor the dissolution of aluminum, dissolved Al may remain in the experimental system and interact with the target surfaces. The systems are then no longer pristine and points of zero charge or sorption data are those of aluminum-bearing systems.

16.
Nanoscale Adv ; 5(16): 4213-4223, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37560422

RESUMO

Magnetite, a ubiquitous mineral in natural systems, is of high interest for a variety of applications including environmental remediation, medicine, and catalysis. If the transformation of magnetite to maghemite through the oxidation of Fe2+ has been well documented, mechanisms involving dissolution processes of Fe2+ in aqueous solutions have been overlooked. Here, the effect of dissolved organic ligands (EDTA (ethylenediaminetetraacetic acid), acetic, lactic and citric acids) on Fe2+ solubility and on the stoichiometry (Fe(ii)/Fe(iii)) of magnetite-maghemite nanoparticles (∼10 nm) was investigated. These ligands were chosen because of their environmental relevance and because they are widely used as coating agents for nanotechnology applications. Results show an insignificant effect of 2 organic ligands (acetate and lactate) on the dissolution of Fe. By contrast, citrate and EDTA enhanced Fe solubility because of the formation of dissolved Fe(ii)- and Fe(iii)-ligand complexes. Both ligands selectively bound Fe(ii) over Fe(iii), but EDTA was much more selective than citrate. The combined effects of oxidation and H+- and ligand-promoted dissolution of Fe from magnetite were predicted using a magnetite-maghemite solid solution model, accounting for the formation of dissolved Fe(ii)- and Fe(iii)-ligand complexes. Therefore, these results show that citrate and EDTA (i) enhance Fe solubility in the presence of magnetite nanoparticles and (ii) modify magnetite stoichiometry, which affects its environmental behavior and its properties for nanotechnology applications.

17.
J Colloid Interface Sci ; 607(Pt 1): 347-356, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34509109

RESUMO

Although silicates are the most common anions in aquatic systems, little is known on the roles they play on the transport of emerging contaminants, such as antibiotics. Using dynamic column experiments, we revealed the controls of Si loadings on goethite (α-FeOOH) coated sands on the transport of a widely used quinolone antibiotic, here focusing on Nalidixic Acid (NA). We find that dynamic flow-through conditions (Darcy velocities of 2.98 cm/h and 14.92 cm/h) sustain monomeric Si species with loadings of up to ~ 0.8 Si/nm2 but that oligomeric species can form at the goethite surfaces under static (batch, no-flow conditions). While these monomeric species occupy no more than ~ 22% of the reactive OH groups on goethite, they can effectively suppress NA binding, and therefore enhance NA mobility in dynamic conditions. NA can also bind on goethite when it is simultaneously injected with high concentrations of Si (2000 µM), yet it becomes progressively replaced by Si over time. Combining kinetics and surface complexation modeling, we present a new transport model to account for the stepwise polymerization of Si on goethite and NA transport. Our findings show that dissolved Si, common to natural surface waters, can play a determining role on the surface speciation and transport of antibiotics in the environment.


Assuntos
Compostos de Ferro , Quinolonas , Adsorção , Cinética , Minerais , Porosidade , Silicatos
18.
MethodsX ; 9: 101721, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35592462

RESUMO

UV-vis spectrophotometric acid-base titration can characterize dissolved organic matter (DOM) acid-base properties. However, it requires incremental pH adjustment, which make the procedure time consuming and the results subjected to dilution effect. This study brings forth a new approach, referred as the "buffer method" for pH adjustments, by using carefully selected pH-buffers to adjust the pH. This, statistically validated method minimizes the pH adjustment time and lightens the laboratory work load. Chemical product cost associated with this novel method is slightly increased as compared to the previous approach, due to the necessity to use pH-buffers. • Buffer method: Acid-base titration by using buffer for pH adjustment • Buffer method validated by statistical means • Rapid, reliable and economical method.

19.
Environ Sci Process Impacts ; 24(9): 1494-1507, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35635543

RESUMO

Sustained eutrophication of the aquatic environment by the remobilization of legacy phosphorus (P) stored in soils and sediments is a prevailing issue worldwide. Fluxes of P from the sediments to the water column, referred to as internal P loading, often delays the recovery of water quality following a reduction in external P loads. Here, we report on the vertical distribution and geochemistry of P, lanthanum (La), iron (Fe) and carbon (C) in the culturally eutrophied Lake Bromont. This lake underwent remediation treatment using La modified bentonite (LMB) commercially available as Phoslock™. We investigated the effectiveness of LMB in decreasing soluble reactive phosphorus (SRP) availability in sediments and in reducing dissolved fluxes of P across the sediment-water interface. Sediment cores were retrieved before and after LMB treatment at three sites representing bottom sediment, sediment influenced by lakeside housing and finally littoral sediment influenced by the lake inflow. Sequential extractions were used to assess changes in P speciation. Depth profiles of dissolved porewater concentrations were obtained after LMB treatment at each site. Results indicate that SRP extracted from the sediments decreased at all sites, while total extracted P (PTOT) bound to redox-sensitive metal oxides increased. 31P NMR data on P extract reveals that 20-43% of total solid-phase P is in the form of organic P (Porg) susceptible to be released via microbial degradation. Geochemical modelling of porewater data provides evidence that LaPO4(s) mineral phases, such as rhabdophane and/or monazite, are likely forming. However, results also suggest that La3+ binding by dissolved organic carbon (DOC) hinders La-phosphate precipitation. We rely on thermodynamic modelling to suggest that high Fe2+ would bind to DOC instead of La3+, therefore promoting P sequestrations by LMB under anoxic conditions.


Assuntos
Lagos , Fósforo , Bentonita/química , Carbono , Argila , Sedimentos Geológicos/química , Ferro , Lagos/química , Lantânio/química , Fosfatos , Fósforo/química
20.
Environ Pollut ; 307: 119554, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35640725

RESUMO

Rare earth elements (REE) have become essential in high- and green-technologies. Their increasing use lead to the release of anthropogenic REE into the environment including aquatic systems. The limited data available on the aquatic ecotoxicology of REE indicate their biological effects are highly dependent on their speciation, posing challenges for a reliable environmental risk assessment (ERA). The current study assessed the influence of speciation on the toxicity of neodymium (Nd), gadolinium (Gd) and ytterbium (Yb) in the Daphnia magna mobility inhibition test (ISO 6341:2012). REE toxicity was assessed individually and in ternary mixture, in the absence and presence of dissolved organic matter (DOM). Speciation was predicted by modeling and REE bioaccumulation by D. magna was measured to better understand the relationship between REE speciation and toxicity. DOM decreased significantly the toxicity of Nd, Gd and the mixture towards this freshwater crustacean. This was explained by a lower REE bioaccumulation in the presence of DOM due to REE-DOM complexation, which reduced REE bioavailability. DOM effects on Yb toxicity and bioaccumulation were limited because of Yb precipitation. We show that the way of expressing EC50 values (based on nominal, measured or predicted REE concentrations in solution) drastically changed REE toxicity assessment and that these changes were influenced by REE speciation. This study demonstrates for the first time that REE speciation, and especially REE-DOM complexation, significantly influences REE bioaccumulation and toxicity towards D. magna. Our results have implications for the subsequent ERA of REE.


Assuntos
Metais Terras Raras , Poluentes Químicos da Água , Animais , Disponibilidade Biológica , Daphnia , Água Doce , Metais Terras Raras/toxicidade , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa