Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Genetics ; 211(4): 1297-1313, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30700528

RESUMO

Purine homeostasis is ensured through a metabolic network widely conserved from prokaryotes to humans. Purines can either be synthesized de novo, reused, or produced by interconversion of extant metabolites using the so-called recycling pathway. Although thoroughly characterized in microorganisms, such as yeast or bacteria, little is known about regulation of the purine biosynthesis network in metazoans. In humans, several diseases are linked to purine metabolism through as yet poorly understood etiologies. Particularly, the deficiency in adenylosuccinate lyase (ADSL)-an enzyme involved both in the purine de novo and recycling pathways-causes severe muscular and neuronal symptoms. In order to address the mechanisms underlying this deficiency, we established Caenorhabditis elegans as a metazoan model organism to study purine metabolism, while focusing on ADSL. We show that the purine biosynthesis network is functionally conserved in C. elegans Moreover, adsl-1 (the gene encoding ADSL in C. elegans) is required for developmental timing, germline stem cell maintenance and muscle integrity. Importantly, these traits are not affected when solely the de novo pathway is abolished, and we present evidence that germline maintenance is linked specifically to ADSL activity in the recycling pathway. Hence, our results allow developmental and tissue specific phenotypes to be ascribed to separable steps of the purine metabolic network in an animal model.


Assuntos
Adenilossuccinato Liase/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Células Germinativas/metabolismo , Homeostase , Músculo Esquelético/metabolismo , Purinas/metabolismo , Adenilossuccinato Liase/genética , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Células Germinativas/citologia
2.
Sci Rep ; 8(1): 3633, 2018 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-29483540

RESUMO

The study of mechanisms that govern feeding behaviour and its related disorders is a matter of global health interest. The roundworm Caenorhabditis elegans is becoming a model organism of choice to study these conserved pathways. C. elegans feeding depends on the contraction of the pharynx (pumping). Thanks to the worm transparency, pumping can be directly observed under a stereoscope. Therefore, C. elegans feeding has been historically investigated by counting pharyngeal pumping or by other indirect approaches. However, those methods are short-term, time-consuming and unsuitable for independent measurements of sizable numbers of individuals. Although some particular devices and long-term methods have been lately reported, they fail in the automated, scalable and/or continuous aspects. Here we present an automated bioluminescence-based method for the analysis and continuous monitoring of worm feeding in a multi-well format. We validate the method using genetic, environmental and pharmacological modulators of pharyngeal pumping. This flexible methodology allows studying food intake at specific time-points or during longer periods of time, in single worms or in populations at any developmental stage. Additionally, changes in feeding rates in response to differential metabolic status or external environmental cues can be monitored in real time, allowing accurate kinetic measurements.


Assuntos
Caenorhabditis elegans/fisiologia , Ingestão de Alimentos/fisiologia , Comportamento Alimentar/fisiologia , Animais , Caenorhabditis elegans/metabolismo , Cinética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa