Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(21): 11856-11875, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37850647

RESUMO

In most bacteria, chromosome segregation is driven by the ParABS system where the CTPase protein ParB loads at the parS site to trigger the formation of a large partition complex. Here, we present in vitro studies of the partition complex for Bacillus subtilis ParB, using single-molecule fluorescence microscopy and AFM imaging to show that transient ParB-ParB bridges are essential for forming DNA condensates. Molecular Dynamics simulations confirm that condensation occurs abruptly at a critical concentration of ParB and show that multimerization is a prerequisite for forming the partition complex. Magnetic tweezer force spectroscopy on mutant ParB proteins demonstrates that CTP hydrolysis at the N-terminal domain is essential for DNA condensation. Finally, we show that transcribing RNA polymerases can steadily traverse the ParB-DNA partition complex. These findings uncover how ParB forms a stable yet dynamic partition complex for chromosome segregation that induces DNA condensation and segregation while enabling replication and transcription.


Assuntos
Cromossomos Bacterianos , Bactérias/genética , Proteínas de Bactérias/metabolismo , Segregação de Cromossomos , Cromossomos Bacterianos/metabolismo , DNA Bacteriano/metabolismo
2.
Nucleic Acids Res ; 48(22): 12917-12928, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33245767

RESUMO

Sequence-dependent structural deformations of the DNA double helix (dsDNA) have been extensively studied, where adenine tracts (A-tracts) provide a striking example for global bending in the molecule. However, in contrast to dsDNA, sequence-dependent structural features of dsRNA have received little attention. In this work, we demonstrate that the nucleotide sequence can induce a bend in a canonical Watson-Crick base-paired dsRNA helix. Using all-atom molecular dynamics simulations, we identified a sequence motif consisting of alternating adenines and uracils, or AU-tracts, that strongly bend the RNA double-helix. This finding was experimentally validated using atomic force microscopy imaging of dsRNA molecules designed to display macroscopic curvature via repetitions of phased AU-tract motifs. At the atomic level, this novel phenomenon originates from a localized compression of the dsRNA major groove and a large propeller twist at the position of the AU-tract. Moreover, the magnitude of the bending can be modulated by changing the length of the AU-tract. Altogether, our results demonstrate the possibility of modifying the dsRNA curvature by means of its nucleotide sequence, which may be exploited in the emerging field of RNA nanotechnology and might also constitute a natural mechanism for proteins to achieve recognition of specific dsRNA sequences.


Assuntos
Adenina/química , DNA/genética , RNA de Cadeia Dupla/genética , Uracila/química , DNA/química , DNA/ultraestrutura , Microscopia de Força Atômica , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Motivos de Nucleotídeos/genética , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/ultraestrutura
3.
Nucleic Acids Res ; 48(9): 5024-5036, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32282908

RESUMO

A-tracts are A:T rich DNA sequences that exhibit unique structural and mechanical properties associated with several functions in vivo. The crystallographic structure of A-tracts has been well characterized. However, the mechanical properties of these sequences is controversial and their response to force remains unexplored. Here, we rationalize the mechanical properties of in-phase A-tracts present in the Caenorhabditis elegans genome over a wide range of external forces, using single-molecule experiments and theoretical polymer models. Atomic Force Microscopy imaging shows that A-tracts induce long-range (∼200 nm) bending, which originates from an intrinsically bent structure rather than from larger bending flexibility. These data are well described with a theoretical model based on the worm-like chain model that includes intrinsic bending. Magnetic tweezers experiments show that the mechanical response of A-tracts and arbitrary DNA sequences have a similar dependence with monovalent salt supporting that the observed A-tract bend is intrinsic to the sequence. Optical tweezers experiments reveal a high stretch modulus of the A-tract sequences in the enthalpic regime. Our work rationalizes the complex multiscale flexibility of A-tracts, providing a physical basis for the versatile character of these sequences inside the cell.


Assuntos
Sequência Rica em At , DNA de Helmintos/química , Animais , Fenômenos Biomecânicos , Caenorhabditis elegans/genética , DNA de Helmintos/ultraestrutura , Genoma Helmíntico , Microscopia de Força Atômica , Pinças Ópticas
4.
Am J Physiol Lung Cell Mol Physiol ; 319(1): L148-L158, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32432921

RESUMO

Surfactant protein D (SP-D) is a C-type lectin that participates in the innate immune defense of lungs. It binds pathogens through its carbohydrate recognition domain in a calcium-dependent manner. Human surfactant protein D (hSP-D) has been routinely obtained from bronchoalveolar lavage of patients suffering from pulmonary alveolar proteinosis (PAP) and from amniotic fluid (AF). As a consequence of the disease, hSP-D obtained from PAP is found in higher amounts and is mainly composed of higher order oligomeric forms. However, PAP-hSP-D has never been directly compared with nonpathological human protein in terms of structure and biological activity. Moreover, the quantitative distribution of the different hSP-D oligomeric forms in human protein obtained from a natural source has never been evaluated. In this work, we have determined the quantitative distribution of AF-hSP-D oligomers, characterized the sugars attached through the N-glycosylation site of the protein, and compared the activity of hSP-D from AF and PAP with respect to their ability to bind and agglutinate bacteria. We have found that fuzzy balls (40%) are the most abundant oligomeric form in AF-hSP-D, very closely followed by dodecamers (33%), with both together constituting 73% of the protein mass. The glycan attached to the N-glycosylation site was found to be composed of fucose, galactose, sialic acid, and N-acetylglucosamine. Finally, in the functional assays performed, hSP-D obtained from PAP showed higher potency, probably as a consequence of its higher proportion of large oligomers compared with hSP-D from AF.


Assuntos
Proteína D Associada a Surfactante Pulmonar/química , Proteína D Associada a Surfactante Pulmonar/metabolismo , Líquido Amniótico/metabolismo , Asparagina/metabolismo , Ligação Competitiva , Cromatografia de Afinidade , Feminino , Glicosilação , Humanos , Polissacarídeos/metabolismo , Gravidez , Ligação Proteica , Multimerização Proteica , Proteinose Alveolar Pulmonar/metabolismo , Proteína D Associada a Surfactante Pulmonar/isolamento & purificação , Relação Estrutura-Atividade
5.
Nucleic Acids Res ; 46(11): 5704-5716, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29762781

RESUMO

In prokaryotes, the centromere is a specialized segment of DNA that promotes the assembly of the segrosome upon binding of the Centromere Binding Protein (CBP). The segrosome structure exposes a specific surface for the interaction of the CBP with the motor protein that mediates DNA movement during cell division. Additionally, the CBP usually controls the transcriptional regulation of the segregation system as a cell cycle checkpoint. Correct segrosome functioning is therefore indispensable for accurate DNA segregation. Here, we combine biochemical reconstruction and structural and biophysical analysis to bring light to the architecture of the segrosome complex in Type III partition systems. We present the particular features of the centromere site, tubC, of the model system encoded in Clostridium botulinum prophage c-st. We find that the split centromere site contains two different iterons involved in the binding and spreading of the CBP, TubR. The resulting nucleoprotein complex consists of a novel double-ring structure that covers part of the predicted promoter. Single molecule data provides a mechanism for the formation of the segrosome structure based on DNA bending and unwinding upon TubR binding.


Assuntos
Centrômero/química , Centrômero/ultraestrutura , Proteínas de Ligação a DNA/metabolismo , Sítios de Ligação , Centrômero/metabolismo , Clostridium botulinum/genética , DNA Bacteriano/química , Óperon , Regiões Promotoras Genéticas , Prófagos/genética
6.
Front Microbiol ; 10: 237, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30814990

RESUMO

The efficiency of horizontal gene transfer, which contributes to acquisition and spread of antibiotic resistance and pathogenicity traits, depends on nucleotide sequence and different mismatch-repair (MMR) proteins participate in this process. To study how MutL and MutS MMR proteins regulate recombination across species boundaries, we have studied natural chromosomal transformation with DNA up to ∼23% sequence divergence. We show that Bacillus subtilis natural chromosomal transformation decreased logarithmically with increased sequence divergence up to 15% in wild type (wt) cells or in cells lacking MutS2 or mismatch repair proteins (MutL, MutS or both). Beyond 15% sequence divergence, the chromosomal transformation efficiency is ∼100-fold higher in ΔmutS and ΔmutSL than in ΔmutS2 or wt cells. In the first phase of the biphasic curve (up to 15% sequence divergence), RecA-catalyzed DNA strand exchange contributes to the delineation of species, and in the second phase, homology-facilitated illegitimate recombination might aid in the restoration of inactivated genes. To understand how MutS modulates the integration process, we monitored DNA strand exchange reactions using a circular single-stranded DNA and a linear double-stranded DNA substrate with an internal 77-bp region with ∼16% or ∼54% sequence divergence in an otherwise homologous substrate. The former substrate delayed, whereas the latter halted RecA-mediated strand exchange. Interestingly, MutS addition overcame the heterologous barrier. We propose that MutS assists DNA strand exchange by facilitating RecA disassembly, and indirectly re-engagement with the homologous 5'-end of the linear duplex. Our data supports the idea that MutS modulates bidirectional RecA-mediated integration of divergent sequences and this is important for speciation.

7.
Elife ; 82019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30601117

RESUMO

CtIP is involved in the resection of broken DNA during the S and G2 phases of the cell cycle for repair by recombination. Acting with the MRN complex, it plays a particularly important role in handling complex DNA end structures by localised nucleolytic processing of DNA termini in preparation for longer range resection. Here we show that human CtIP is a tetrameric protein adopting a dumbbell architecture in which DNA binding domains are connected by long coiled-coils. The protein complex binds two short DNA duplexes with high affinity and bridges DNA molecules in trans. DNA binding is potentiated by dephosphorylation and is not specific for DNA end structures per se. However, the affinity for linear DNA molecules is increased if the DNA terminates with complex structures including forked ssDNA overhangs and nucleoprotein conjugates. This work provides a biochemical and structural basis for the function of CtIP at complex DNA breaks.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas de Ligação a DNA/química , DNA/química , Endodesoxirribonucleases/química , Multimerização Proteica , Sequência de Aminoácidos , Sítios de Ligação/genética , Ligação Competitiva , DNA/metabolismo , DNA de Cadeia Simples , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Conformação de Ácido Nucleico , Domínios Proteicos
8.
Sci Rep ; 7: 43342, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28230082

RESUMO

Cytomotive filaments are essential for the spatial organization in cells, showing a dynamic behavior based on nucleotide hydrolysis. TubZ is a tubulin-like protein that functions in extrachromosomal DNA movement within bacteria. TubZ filaments grow in a helical fashion following treadmilling or dynamic instability, although the underlying mechanism is unclear. We have unraveled the molecular basis for filament assembly and dynamics combining electron and atomic force microscopy and biochemical analyses. Our findings suggest that GTP caps retain the filament helical structure and hydrolysis triggers filament stiffening upon disassembly. We show that the TubZ C-terminal tail is an unstructured domain that fulfills multiple functions contributing to the filament helical arrangement, the polymer remodeling into tubulin-like rings and the full disassembly process. This C-terminal tail displays the binding site for partner proteins and we report how it modulates the interaction of the regulator protein TubY.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas do Citoesqueleto/metabolismo , Multimerização Proteica , Bacillus thuringiensis/metabolismo , Sítios de Ligação , Guanosina Trifosfato/metabolismo , Hidrólise , Microscopia de Força Atômica , Microscopia Eletrônica , Ligação Proteica , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa