Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 42(2): e110833, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36354735

RESUMO

The AKT-mTOR pathway is a central regulator of cell growth and metabolism. Upon sustained mTOR activity, AKT activity is attenuated by a feedback loop that restrains upstream signaling. However, how cells control the signals that limit AKT activity is not fully understood. Here, we show that MASTL/Greatwall, a cell cycle kinase that supports mitosis by phosphorylating the PP2A/B55 inhibitors ENSA/ARPP19, inhibits PI3K-AKT activity by sustaining mTORC1- and S6K1-dependent phosphorylation of IRS1 and GRB10. Genetic depletion of MASTL results in an inefficient feedback loop and AKT hyperactivity. These defects are rescued by the expression of phosphomimetic ENSA/ARPP19 or inhibition of PP2A/B55 phosphatases. MASTL is directly phosphorylated by mTORC1, thereby limiting the PP2A/B55-dependent dephosphorylation of IRS1 and GRB10 downstream of mTORC1. Downregulation of MASTL results in increased glucose uptake in vitro and increased glucose tolerance in adult mice, suggesting the relevance of the MASTL-PP2A/B55 kinase-phosphatase module in controlling AKT and maintaining metabolic homeostasis.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina , Proteína Fosfatase 2 , Proteínas Serina-Treonina Quinases , Animais , Camundongos , Ciclo Celular/genética , Glucose/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Mitose , Fosfatidilinositol 3-Quinases/genética , Fosforilação , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo
2.
Semin Cell Dev Biol ; 107: 28-35, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32334991

RESUMO

Proper progression throughout the cell division cycle depends on the expression level of a family of proteins known as cyclins, and the subsequent activation of cyclin-dependent kinases (Cdks). Among the numerous members of the mammalian cyclin family, only a few of them, cyclins A, B, C, D and E, are known to display critical roles in the cell cycle. These functions will be reviewed here with a special focus on their relevance in different cell types in vivo and their implications in human disease.


Assuntos
Ciclo Celular , Ciclinas/metabolismo , Mamíferos/metabolismo , Animais , Ciclo Celular/genética , Segregação de Cromossomos/genética , Replicação do DNA/genética , Humanos , Transcrição Gênica
3.
Viruses ; 16(6)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38932236

RESUMO

Prior research has established the anti-apoptotic effects in insect cell cultures of Bombyx mori (B. mori) hemolymph, as well as the heightened production yields of recombinant proteins facilitated by baculovirus vectors in insect cells cultivated in media supplemented with this hemolymph. In this study, we investigated the hemolymph of another Lepidoptera species, Trichoplusia ni (T. ni), and observed similar beneficial effects in insect cells cultivated in media supplemented with this natural substance. We observed enhancements in both production yield (approximately 1.5 times higher) and late-stage cell viabilities post-infection (30-40% higher). Storage-protein 2 from B. mori (SP2Bm) has previously been identified as one of the abundant hemolymph proteins potentially responsible for the beneficial effects observed after the use of B. mori hemolymph-supplemented cell culture media. By employing a dual baculovirus vector that co-expresses the SP2Bm protein alongside the GFP protein, we achieved a threefold increase in reporter protein production compared to a baculovirus vector expressing GFP alone. This study underscores the potential of hemolymph proteins sourced from various Lepidoptera species as biotechnological tools to augment baculovirus vector productivities, whether utilized as natural supplements in cell culture media or as hemolymph-derived recombinant proteins co-expressed by baculovirus vectors.


Assuntos
Baculoviridae , Hemolinfa , Proteínas de Insetos , Proteínas Recombinantes , Animais , Hemolinfa/metabolismo , Proteínas Recombinantes/genética , Baculoviridae/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Lepidópteros/virologia , Vetores Genéticos/genética , Linhagem Celular , Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Bombyx/genética , Bombyx/virologia , Bombyx/metabolismo , Meios de Cultura/química , Mariposas/virologia , Sobrevivência Celular
4.
Vaccines (Basel) ; 9(9)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34579243

RESUMO

The VP60 capsid protein from rabbit haemorrhagic disease virus (RHDV), the causative agent of one of the most economically important disease in rabbits worldwide, forms virus-like particles (VLPs) when expressed using heterologous protein expression systems such as recombinant baculovirus, yeasts, plants or mammalian cell cultures. To prevent RHDV dissemination, it would be beneficial to develop a bivalent vaccine including both RHDV GI.1- and RHDV GI.2-derived VLPs to achieve robust immunisation against both serotypes. In the present work, we developed a strategy of production of a dual-serving RHDV vaccine co-expressing the VP60 proteins from the two RHDV predominant serotypes using CrisBio technology, which uses Tricholusia ni insect pupae as natural bioreactors, which are programmed by recombinant baculovirus vectors. Co-infecting the insect pupae with two baculovirus vectors expressing the RHDV GI.1- and RHDV GI.2-derived VP60 proteins, we obtained chimeric VLPs incorporating both proteins as determined by using serotype-specific monoclonal antibodies. The resulting VLPs showed the typical size and shape of this calicivirus as determined by electron microscopy. Rabbits immunised with the chimeric VLPs were fully protected against a lethal challenge infection with the two RHDV serotypes. This study demonstrates that it is possible to generate a dual cost-effective vaccine against this virus using a single production and purification process, greatly simplifying vaccine manufacturing.

5.
JCI Insight ; 6(16)2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34237032

RESUMO

Congenital microcephaly (MCPH) is a neurodevelopmental disease associated with mutations in genes encoding proteins involved in centrosomal and chromosomal dynamics during mitosis. Detailed MCPH pathogenesis at the cellular level is still elusive, given the diversity of MCPH genes and lack of comparative in vivo studies. By generating a series of CRISPR/Cas9-mediated genetic KOs, we report here that - whereas defects in spindle pole proteins (ASPM, MCPH5) result in mild MCPH during development - lack of centrosome (CDK5RAP2, MCPH3) or centriole (CEP135, MCPH8) regulators induces delayed chromosome segregation and chromosomal instability in neural progenitors (NPs). Our mouse model of MCPH8 suggests that loss of CEP135 results in centriole duplication defects, TP53 activation, and cell death of NPs. Trp53 ablation in a Cep135-deficient background prevents cell death but not MCPH, and it leads to subcortical heterotopias, a malformation seen in MCPH8 patients. These results suggest that MCPH in some MCPH patients can arise from the lack of adaptation to centriole defects in NPs and may lead to architectural defects if chromosomally unstable cells are not eliminated during brain development.


Assuntos
Centríolos/genética , Instabilidade Cromossômica , Microcefalia/genética , Células-Tronco Neurais/patologia , Animais , Encéfalo/citologia , Encéfalo/patologia , Sistemas CRISPR-Cas/genética , Proteínas de Ligação a Calmodulina/genética , Proteínas de Ligação a Calmodulina/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centríolos/patologia , Modelos Animais de Doenças , Embrião de Mamíferos , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Microcefalia/patologia , Microscopia Eletrônica de Transmissão , Imagem Molecular , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/ultraestrutura , Cultura Primária de Células , Imagem com Lapso de Tempo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
6.
PLoS One ; 12(12): e0189741, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29244872

RESUMO

Several viruses manipulate the ubiquitin-proteasome system (UPS) to initiate a productive infection. Determined viral proteins are able to change the host's ubiquitin machinery and some viruses even encode their own ubiquitinating or deubiquitinating enzymes. African swine fever virus (ASFV) encodes a gene homologous to the E2 ubiquitin conjugating (UBC) enzyme. The viral ubiquitin-conjugating enzyme (UBCv1) is expressed throughout ASFV infection and accumulates at late times post infection. UBCv is also present in the viral particle suggesting that the ubiquitin-proteasome pathway could play an important role at early ASFV infection. We determined that inhibition of the final stage of the ubiquitin-proteasome pathway blocked a post-internalization step in ASFV replication in Vero cells. Under proteasome inhibition, ASF viral genome replication, late gene expression and viral production were severely reduced. Also, ASFV enhanced proteasome activity at late times and the accumulation of polyubiquitinated proteins surrounding viral factories. Core-associated and/or viral proteins involved in DNA replication may be targets for the ubiquitin-proteasome pathway that could possibly assist virus uncoating at final core breakdown and viral DNA release. At later steps, polyubiquitinated proteins at viral factories could exert regulatory roles in cell signaling.


Assuntos
Vírus da Febre Suína Africana/genética , Febre Suína Africana/genética , Enzimas de Conjugação de Ubiquitina/genética , Proteínas Virais/genética , Replicação Viral/genética , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/patogenicidade , Animais , Chlorocebus aethiops , Replicação do DNA/genética , DNA Viral/genética , Genoma Viral , Complexo de Endopeptidases do Proteassoma/genética , Suínos/virologia , Ubiquitina/genética , Células Vero , Vírion/genética
7.
PLoS One ; 10(10): e0140039, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26458221

RESUMO

Vaccines based on virus-like particles (VLPs) have proven effective in humans and animals. In this regard, the baculovirus expression vector system (BEVS) is one of the technologies of choice to generate such highly immunogenic vaccines. The extended use of these vaccines for human and animal populations is constrained because of high production costs, therefore a significant improvement in productivity is crucial to ensure their commercial viability. Here we describe the use of the previously described baculovirus expression cassette, called TB, to model the production of two VLP-forming vaccine antigens in insect cells. Capsid proteins from porcine circovirus type 2 (PCV2 Cap) and from the calicivirus that causes rabbit hemorrhagic disease (RHDV VP60) were expressed in insect cells using baculoviruses genetically engineered with the TB expression cassette. Productivity was compared to that obtained using standard counterpart vectors expressing the same proteins under the control of the polyhedrin promoter. Our results demonstrate that the use of the TB expression cassette increased the production yields of these vaccine antigens by around 300% with respect to the standard vectors. The recombinant proteins produced by TB-modified vectors were fully functional, forming VLPs identical in size and shape to those generated by the standard baculoviruses, as determined by electron microscopy analysis. The use of the TB expression cassette implies a simple modification of the baculovirus vectors that significantly improves the cost efficiency of VLP-based vaccine production, thereby facilitating the commercial viability and broad application of these vaccines for human and animal health.


Assuntos
Baculoviridae/genética , Baculoviridae/imunologia , Vetores Genéticos/biossíntese , Vacinas de Partículas Semelhantes a Vírus/biossíntese , Animais , Linhagem Celular , Análise Custo-Benefício , Vetores Genéticos/imunologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Regiões Promotoras Genéticas , Coelhos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Spodoptera/citologia , Suínos , Vacinas de Partículas Semelhantes a Vírus/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa