Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Mol Ecol ; 29(4): 812-828, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31995648

RESUMO

Disentangling the contribution of long-term evolutionary processes and recent anthropogenic impacts to current genetic patterns of wildlife species is key to assessing genetic risks and designing conservation strategies. Here, we used 80 whole nuclear genomes and 96 mitogenomes from populations of the Eurasian lynx covering a range of conservation statuses, climatic zones and subspecies across Eurasia to infer the demographic history, reconstruct genetic patterns, and discuss the influence of long-term isolation and/or more recent human-driven changes. Our results show that Eurasian lynx populations shared a common history until 100,000 years ago, when Asian and European populations started to diverge and both entered a period of continuous and widespread decline, with western populations, except Kirov, maintaining lower effective sizes than eastern populations. Population declines and increased isolation in more recent times probably drove the genetic differentiation between geographically and ecologically close westernmost European populations. By contrast, and despite the wide range of habitats covered, populations are quite homogeneous genetically across the Asian range, showing a pattern of isolation by distance and providing little genetic support for the several proposed subspecies. Mitogenomic and nuclear divergences and population declines starting during the Late Pleistocene can be mostly attributed to climatic fluctuations and early human influence, but the widespread and sustained decline since the Holocene is more probably the consequence of anthropogenic impacts which intensified in recent centuries, especially in western Europe. Genetic erosion in isolated European populations and lack of evidence for long-term isolation argue for the restoration of lost population connectivity.


Assuntos
Evolução Biológica , Genoma/genética , Genômica , Lynx/genética , Animais , DNA Mitocondrial/genética , Ecossistema , Espécies em Perigo de Extinção , Europa (Continente) , Deriva Genética , Humanos , Filogenia , Análise de Sequência de DNA
2.
Mol Biol Evol ; 34(11): 2893-2907, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28962023

RESUMO

There is the tendency to assume that endangered species have been both genetically and demographically healthier in the past, so that any genetic erosion observed today was caused by their recent decline. The Iberian lynx (Lynx pardinus) suffered a dramatic and continuous decline during the 20th century, and now shows extremely low genome- and species-wide genetic diversity among other signs of genomic erosion. We analyze ancient (N = 10), historical (N = 245), and contemporary (N = 172) samples with microsatellite and mitogenome data to reconstruct the species' demography and investigate patterns of genetic variation across space and time. Iberian lynx populations transitioned from low but significantly higher genetic diversity than today and shallow geographical differentiation millennia ago, through a structured metapopulation with varying levels of diversity during the last centuries, to two extremely genetically depauperate and differentiated remnant populations by 2002. The historical subpopulations show varying extents of genetic drift in relation to their recent size and time in isolation, but these do not predict whether the populations persisted or went finally extinct. In conclusion, current genetic patterns were mainly shaped by genetic drift, supporting the current admixture of the two genetic pools and calling for a comprehensive genetic management of the ongoing conservation program. This study illustrates how a retrospective analysis of demographic and genetic patterns of endangered species can shed light onto their evolutionary history and this, in turn, can inform conservation actions.


Assuntos
Lynx/genética , Análise de Sequência de DNA/métodos , Animais , Conservação dos Recursos Naturais , DNA Antigo/análise , Espécies em Perigo de Extinção , Extinção Biológica , Deriva Genética , Variação Genética/genética , Genoma , Genoma Mitocondrial/genética , Repetições de Microssatélites/genética
3.
BMC Genomics ; 18(1): 556, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28732460

RESUMO

BACKGROUND: The Iberian lynx (Lynx pardinus) has been acknowledged as the most endangered felid species in the world. An intense contraction and fragmentation during the twentieth century left less than 100 individuals split in two isolated and genetically eroded populations by 2002. Genetic monitoring and management so far have been based on 36 STRs, but their limited variability and the more complex situation of current populations demand more efficient molecular markers. The recent characterization of the Iberian lynx genome identified more than 1.6 million SNPs, of which 1536 were selected and genotyped in an extended Iberian lynx sample. METHODS: We validated 1492 SNPs and analysed their heterozygosity, Hardy-Weinberg equilibrium, and linkage disequilibrium. We then selected a panel of 343 minimally linked autosomal SNPs from which we extracted subsets optimized for four different typical tasks in conservation applications: individual identification, parentage assignment, relatedness estimation, and admixture classification, and compared their power to currently used STR panels. RESULTS: We ascribed 21 SNPs to chromosome X based on their segregation patterns, and identified one additional marker that showed significant differentiation between sexes. For all applications considered, panels of autosomal SNPs showed higher power than the currently used STR set with only a very modest increase in the number of markers. CONCLUSIONS: These novel panels of highly informative genome-wide SNPs provide more powerful, efficient, and flexible tools for the genetic management and non-invasive monitoring of Iberian lynx populations. This example highlights an important outcome of whole-genome studies in genetically threatened species.


Assuntos
Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Genômica , Lynx/genética , Polimorfismo de Nucleotídeo Único , Animais , Feminino , Técnicas de Genotipagem , Heterozigoto , Desequilíbrio de Ligação , Masculino , Linhagem
4.
Am J Hum Genet ; 90(3): 486-93, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-22365151

RESUMO

Different lines of evidence point to the resettlement of much of western and central Europe by populations from the Franco-Cantabrian region during the Late Glacial and Postglacial periods. In this context, the study of the genetic diversity of contemporary Basques, a population located at the epicenter of the Franco-Cantabrian region, is particularly useful because they speak a non-Indo-European language that is considered to be a linguistic isolate. In contrast with genome-wide analysis and Y chromosome data, where the problem of poor time estimates remains, a new timescale has been established for the human mtDNA and makes this genome the most informative marker for studying European prehistory. Here, we aim to increase knowledge of the origins of the Basque people and, more generally, of the role of the Franco-Cantabrian refuge in the postglacial repopulation of Europe. We thus characterize the maternal ancestry of 908 Basque and non-Basque individuals from the Basque Country and immediate adjacent regions and, by sequencing 420 complete mtDNA genomes, we focused on haplogroup H. We identified six mtDNA haplogroups, H1j1, H1t1, H2a5a1, H1av1, H3c2a, and H1e1a1, which are autochthonous to the Franco-Cantabrian region and, more specifically, to Basque-speaking populations. We detected signals of the expansion of these haplogroups at ∼4,000 years before present (YBP) and estimated their separation from the pan-European gene pool at ∼8,000 YBP, antedating the Indo-European arrival to the region. Our results clearly support the hypothesis of a partial genetic continuity of contemporary Basques with the preceding Paleolithic/Mesolithic settlers of their homeland.


Assuntos
DNA Mitocondrial/genética , Etnicidade/genética , Variação Genética/genética , População Branca/genética , Sequência de Bases , Frequência do Gene , Genética Populacional/métodos , Haplótipos , Humanos , Dados de Sequência Molecular , Filogenia
5.
Mol Biol Evol ; 29(9): 2211-22, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22411853

RESUMO

Basque people have received considerable attention from anthropologists, geneticists, and linguists during the last century due to the singularity of their language and to other cultural and biological characteristics. Despite the multidisciplinary efforts performed to address the questions of the origin, uniqueness, and heterogeneity of Basques, the genetic studies performed up to now have suffered from a weak study design where populations are not analyzed in an adequate geographic and population context. To address the former questions and to overcome these design limitations, we have analyzed the uniparentally inherited markers (Y chromosome and mitochondrial DNA) of ~900 individuals from 18 populations, including those where Basque is currently spoken and populations from adjacent regions where Basque might have been spoken in historical times. Our results indicate that Basque-speaking populations fall within the genetic Western European gene pool, that they are similar to geographically surrounding non-Basque populations, and also that their genetic uniqueness is based on a lower amount of external influences compared with other Iberians and French populations. Our data suggest that the genetic heterogeneity and structure observed in the Basque region result from pre-Roman tribal structure related to geography and might be linked to the increased complexity of emerging societies during the Bronze Age. The rough overlap of the pre-Roman tribe location and the current dialect limits support the notion that the environmental diversity in the region has played a recurrent role in cultural differentiation and ethnogenesis at different time periods.


Assuntos
Marcadores Genéticos , População Branca/genética , Cromossomos Humanos Y , DNA Mitocondrial , Etnicidade/genética , Genética Populacional , Geografia , Haplótipos , Humanos
6.
Ann Hum Genet ; 76(1): 1-8, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22017296

RESUMO

Population origins and ancestry have previously been found to be important determinants of coronary artery disease (CAD). This study investigates associations of Lebanese mitochondrial DNA lineages with CAD and studies their correlation with other populations, exploring population structures that may infer mitochondria functional associations and reveal population movements and origins. Sequencing the mitochondrial hypervariable sequence 1 (HVS-1) of 363 controls and 448 cases revealed that haplogroup W was more frequent (P = 0.013) in cases compared to controls, and was associated with increased risk of CAD (OR = 5.50, 95% CI = 1.50-35.30, P = 0.026) among Lebanese samples. Haplogroup A was only found in controls (P = 0.029). We have detected stronger geographic correlation between haplogroup W and CAD (Pearson's r = 0.316, P < 0.001) than between haplogroup A and CAD (r = 0.149, P < 0.001). HVS-1 phylogenetic network of haplogroup W shows controls are restricted to European clusters while cases belong mostly to Middle Eastern natives. The network of haplogroup A shows that the controls belong to a cluster dominated by Central Asians. Our results show evidence of a gene flow into Lebanon, creating CAD-associated population structures that are similar to those in the source populations, maintained by limited admixture, and probably encompassing variations on the nuclear and/or the mitochondrial genome that are correlated with the disease.


Assuntos
Doença da Artéria Coronariana/genética , DNA Mitocondrial , Fluxo Gênico , Haplótipos , Adulto , África , Povo Asiático/genética , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença , Variação Genética , Humanos , Líbano , Masculino , Pessoa de Meia-Idade , Oriente Médio , Filogeografia , População Branca/genética
7.
PLoS One ; 17(9): e0266161, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36170266

RESUMO

The introduction and expansion of an invasive non-native species could have important consequences for the genetic patterns and processes of native species, moreover if the new arrival competes strongly for resources and space. This may result in the demographic decline of the native species. Knowing the effects on the levels of genetic diversity and structure in native species is key in terms of their conservation. We analysed temporal (over 50 years) genetic variation of the population of the European polecat (Mustela putorius), a species under threat in several European countries, in the Bialowieza Primeval Forest (BPF), Poland, before and after the invasion of the American mink (Neovison vison). Using 11 microsatellite loci and a fragment of the mitochondrial control region we show that levels of diversity changed in the polecat population over 53 generations (over the period 1959-2012) and after the invasion of mink. When compared with other threatened European polecat populations, high levels of diversity are observed in the population in BPF in both periods, as well as in other areas in Poland. Our data shows that genetic structure was not present either before or after the mink invasion in BPF. This would suggest that the polecat population in Poland was not affected by invasive species and other negative factors and would be a potential good source of individuals for captive breeding or genetic rescue conservation management actions in areas where such actions are needed, for example the UK.


Assuntos
Furões , Vison , Animais , Furões/genética , Variação Genética , Humanos , Espécies Introduzidas , Repetições de Microssatélites/genética , Vison/genética
8.
Am J Phys Anthropol ; 146(2): 271-80, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21915847

RESUMO

Tunisia has experienced a variety of human migrations that have modeled the myriad cultural groups inhabiting the area. Both Arabic and Berber-speaking populations live in Tunisia. Berbers are commonly considered as in situ descendants of peoples who settled roughly in Palaeolithic times, and posterior demographic events such as the arrival of the Neolithic, the Arab migrations, and the expulsion of the "Moors" from Spain, had a strong cultural influence. Nonetheless, the genetic structure and the population relationships of the ethnic groups living in Tunisia have been poorly assessed. In order to gain insight into the paternal genetic landscape and population structure, more than 40 Y-chromosome single nucleotide polymorphisms and 17 short tandem repeats were analyzed in five Tunisian ethnic groups (three Berber-speaking isolates, one Andalusian, and one Cosmopolitan Arab). The most common lineage was the North African haplogroup E-M81 (71%), being fixed in two Berber samples (Chenini-Douiret and Jradou), suggesting isolation and genetic drift. Differential levels of paternal gene flow from the Near East were detected in the Tunisian samples (J-M267 lineage over 30%); however, no major sub-Saharan African or European influence was found. This result contrasts with the high amount of sub-Saharan and Eurasian maternal lineages previously described in Tunisia. Overall, our results reveal a certain genetic inter-population diversity, especially among Berber groups, and sexual asymmetry, paternal lineages being mostly of autochthonous origin. In addition, Andalusians, who are supposed to be migrants from southern Spain, do not exhibit any substantial contribution of European lineages, suggesting a North African origin for this ethnic group.


Assuntos
População Negra/genética , Cromossomos Humanos Y , Etnicidade/genética , Filogeografia , População Branca/genética , Análise de Variância , Emigração e Imigração , Marcadores Genéticos , Humanos , Masculino , Repetições de Microssatélites , Filogenia , Polimorfismo de Nucleotídeo Único , Tunísia
9.
PLoS Genet ; 4(9): e1000200, 2008 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-18818760

RESUMO

In the last two decades, mitochondrial DNA (mtDNA) and the non-recombining portion of the Y chromosome (NRY) have been extensively used in order to measure the maternally and paternally inherited genetic structure of human populations, and to infer sex-specific demography and history. Most studies converge towards the notion that among populations, women are genetically less structured than men. This has been mainly explained by a higher migration rate of women, due to patrilocality, a tendency for men to stay in their birthplace while women move to their husband's house. Yet, since population differentiation depends upon the product of the effective number of individuals within each deme and the migration rate among demes, differences in male and female effective numbers and sex-biased dispersal have confounding effects on the comparison of genetic structure as measured by uniparentally inherited markers. In this study, we develop a new multi-locus approach to analyze jointly autosomal and X-linked markers in order to aid the understanding of sex-specific contributions to population differentiation. We show that in patrilineal herder groups of Central Asia, in contrast to bilineal agriculturalists, the effective number of women is higher than that of men. We interpret this result, which could not be obtained by the analysis of mtDNA and NRY alone, as the consequence of the social organization of patrilineal populations, in which genetically related men (but not women) tend to cluster together. This study suggests that differences in sex-specific migration rates may not be the only cause of contrasting male and female differentiation in humans, and that differences in effective numbers do matter.


Assuntos
Cromossomos Humanos Y/genética , Genética Populacional , Dinâmica Populacional , Meio Social , Adulto , Ásia Central , Simulação por Computador , DNA Mitocondrial/genética , Emigração e Imigração , Feminino , Humanos , Masculino , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Fatores Sexuais
10.
BMC Evol Biol ; 7: 170, 2007 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-17892545

RESUMO

BACKGROUND: Dating of population divergence is critical in understanding speciation and in evaluating the evolutionary significance of genetic lineages, upon which identification of conservation and management units should be based. In this study we used a multilocus approach and the Isolation-Migration model based on coalescence theory to estimate the time of divergence of the Spanish and Eastern imperial eagle sister species. This model enables estimation of population sizes at split, and inference of gene flow after divergence. RESULTS: Our results indicate that divergence may have occurred during the Holocene or the late Pleistocene, much more recently than previously suspected. They also suggest a large population reduction at split, with an estimated effective population size several times smaller for the western population than for the eastern population. Asymmetrical gene flow after divergence, from the Eastern imperial eagle to the Spanish imperial eagle, was detected for the nuclear genome but not the mitochondrial genome. Male-mediated gene flow after divergence may explain this result, and the previously reported lower mitochondrial diversity but similar nuclear diversity in Spanish imperial eagles compared to the Eastern species. CONCLUSION: Spanish and Eastern imperial eagles split from a common ancestor much more recently than previously thought, and asymmetrical gene flow occurred after divergence. Revision of the phylogenetic proximity of both species is warranted, with implications for conservation.


Assuntos
Águias/genética , Fluxo Gênico , Especiação Genética , Filogenia , Migração Animal , Animais , Conservação dos Recursos Naturais , DNA Mitocondrial/genética , Extinção Biológica , Funções Verossimilhança , Repetições de Microssatélites/genética , Espanha
12.
Eur J Hum Genet ; 24(6): 937-43, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26374132

RESUMO

The Roma, also known as 'Gypsies', represent the largest and the most widespread ethnic minority of Europe. There is increasing evidence, based on linguistic, anthropological and genetic data, to suggest that they originated from the Indian subcontinent, with subsequent bottlenecks and undetermined gene flow from/to hosting populations during their diaspora. Further support comes from the presence of Indian uniparentally inherited lineages, such as mitochondrial DNA M and Y-chromosome H haplogroups, in a significant number of Roma individuals. However, the limited resolution of most genetic studies so far, together with the restriction of the samples used, have prevented the detection of other non-Indian founder lineages that might have been present in the proto-Roma population. We performed a high-resolution study of the uniparental genomes of 753 Roma and 984 non-Roma hosting European individuals. Roma groups show lower genetic diversity and high heterogeneity compared with non-Roma samples as a result of lower effective population size and extensive drift, consistent with a series of bottlenecks during their diaspora. We found a set of founder lineages, present in the Roma and virtually absent in the non-Roma, for the maternal (H7, J1b3, J1c1, M18, M35b, M5a1, U3, and X2d) and paternal (I-P259, J-M92, and J-M67) genomes. This lineage classification allows us to identify extensive gene flow from non-Roma to Roma groups, whereas the opposite pattern, although not negligible, is substantially lower (up to 6.3%). Finally, the exact haplotype matching analysis of both uniparental lineages consistently points to a Northwestern origin of the proto-Roma population within the Indian subcontinent.


Assuntos
Efeito Fundador , Linhagem , Roma (Grupo Étnico)/genética , Cromossomos Humanos Y/genética , DNA Mitocondrial/genética , Europa (Continente) , Heterogeneidade Genética , Genoma Humano , Migração Humana , Humanos , Polimorfismo Genético
13.
Genome Biol ; 17(1): 251, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27964752

RESUMO

BACKGROUND: Genomic studies of endangered species provide insights into their evolution and demographic history, reveal patterns of genomic erosion that might limit their viability, and offer tools for their effective conservation. The Iberian lynx (Lynx pardinus) is the most endangered felid and a unique example of a species on the brink of extinction. RESULTS: We generate the first annotated draft of the Iberian lynx genome and carry out genome-based analyses of lynx demography, evolution, and population genetics. We identify a series of severe population bottlenecks in the history of the Iberian lynx that predate its known demographic decline during the 20th century and have greatly impacted its genome evolution. We observe drastically reduced rates of weak-to-strong substitutions associated with GC-biased gene conversion and increased rates of fixation of transposable elements. We also find multiple signatures of genetic erosion in the two remnant Iberian lynx populations, including a high frequency of potentially deleterious variants and substitutions, as well as the lowest genome-wide genetic diversity reported so far in any species. CONCLUSIONS: The genomic features observed in the Iberian lynx genome may hamper short- and long-term viability through reduced fitness and adaptive potential. The knowledge and resources developed in this study will boost the research on felid evolution and conservation genomics and will benefit the ongoing conservation and management of this emblematic species.


Assuntos
Genética Populacional , Genoma , Lynx/genética , Animais , Espécies em Perigo de Extinção , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Análise de Sequência de DNA
14.
Eur J Hum Genet ; 22(10): 1201-7, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24518830

RESUMO

The transition from hunting and gathering to plant and animal domestication was one of the most important cultural and technological revolutions in human history. According to archeologists and paleoanthropologists, this transition triggered major demographic expansions. However, few genetic studies have found traces of Neolithic expansions in the current repartition of genetic polymorphism, pointing rather toward Paleolithic expansions. Here, we used microsatellite autosomal data to investigate the past demographic history of 87 African and Eurasian human populations with contrasted lifestyles (nomadic hunter-gatherers, semi-nomadic herders and sedentary farmers). Likely due to the combination of a higher mutation rate and the possibility to analyze several loci as independent replicates of the coalescent process, the analysis of microsatellite data allowed us to infer more recent expansions than previous genetic studies, potentially resulting from the Neolithic transition. Despite the variability in their location and environment, we found consistent expansions for all sedentary farmers, while we inferred constant population sizes for all hunter-gatherers and most herders that could result from constraints linked to a nomadic or semi-nomadic lifestyle and/or competition for land between herders and farmers. As an exception, we inferred expansions for Central Asian herders. This might be linked with the arid environment of this area that may have been more favorable to nomadic herders than to sedentary farmers. Alternatively, current Central Asian herders may descent from populations who have first experienced a transition from hunter-gathering to sedentary agropastoralism, and then a second transition to nomadic herding.


Assuntos
Genética Populacional , Repetições de Microssatélites/genética , Densidade Demográfica , Migrantes , África , Ásia , Europa (Continente) , Marcadores Genéticos , Genoma Humano , Técnicas de Genotipagem , Humanos , Estilo de Vida , Filogeografia , Polimorfismo Genético
15.
PLoS One ; 8(11): e80293, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24312208

RESUMO

The geostrategic location of North Africa as a crossroad between three continents and as a stepping-stone outside Africa has evoked anthropological and genetic interest in this region. Numerous studies have described the genetic landscape of the human population in North Africa employing paternal, maternal, and biparental molecular markers. However, information from these markers which have different inheritance patterns has been mostly assessed independently, resulting in an incomplete description of the region. In this study, we analyze uniparental and genome-wide markers examining similarities or contrasts in the results and consequently provide a comprehensive description of the evolutionary history of North Africa populations. Our results show that both males and females in North Africa underwent a similar admixture history with slight differences in the proportions of admixture components. Consequently, genome-wide diversity show similar patterns with admixture tests suggesting North Africans are a mixture of ancestral populations related to current Africans and Eurasians with more affinity towards the out-of-Africa populations than to sub-Saharan Africans. We estimate from the paternal lineages that most North Africans emerged ∼15,000 years ago during the last glacial warming and that population splits started after the desiccation of the Sahara. Although most North Africans share a common admixture history, the Tunisian Berbers show long periods of genetic isolation and appear to have diverged from surrounding populations without subsequent mixture. On the other hand, continuous gene flow from the Middle East made Egyptians genetically closer to Eurasians than to other North Africans. We show that genetic diversity of today's North Africans mostly captures patterns from migrations post Last Glacial Maximum and therefore may be insufficient to inform on the initial population of the region during the Middle Paleolithic period.


Assuntos
Evolução Molecular , Variação Genética , Genética Populacional , Genoma Humano , África do Norte , Cromossomos Humanos Y , Análise por Conglomerados , Ligação Genética , Estudo de Associação Genômica Ampla , Humanos , Masculino
16.
Eur J Hum Genet ; 21(4): 415-22, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22968131

RESUMO

Homogeneous Proto-Slavic genetic substrate and/or extensive mixing after World War II were suggested to explain homogeneity of contemporary Polish paternal lineages. Alternatively, Polish local populations might have displayed pre-war genetic heterogeneity owing to genetic drift and/or gene flow with neighbouring populations. Although sharp genetic discontinuity along the political border between Poland and Germany indisputably results from war-mediated resettlements and homogenisation, it remained unknown whether Y-chromosomal diversity in ethnically/linguistically defined populations was clinal or discontinuous before the war. In order to answer these questions and elucidate early Slavic migrations, 1156 individuals from several Slavic and German populations were analysed, including Polish pre-war regional populations and an autochthonous Slavic population from Germany. Y chromosomes were assigned to 39 haplogroups and genotyped for 19 STRs. Genetic distances revealed similar degree of differentiation of Slavic-speaking pre-war populations from German populations irrespective of duration and intensity of contacts with German speakers. Admixture estimates showed minor Slavic paternal ancestry (~20%) in modern eastern Germans and hardly detectable German paternal ancestry in Slavs neighbouring German populations for centuries. BATWING analysis of isolated Slavic populations revealed that their divergence was preceded by rapid demographic growth, undermining theory that Slavic expansion was primarily linguistic rather than population spread. Polish pre-war regional populations showed within-group heterogeneity and lower STR variation within R-M17 subclades compared with modern populations, which might have been homogenised by war resettlements. Our results suggest that genetic studies on early human history in the Vistula and Oder basins should rely on reconstructed pre-war rather than modern populations.


Assuntos
Cromossomos Humanos Y/genética , População Branca/genética , Fluxo Gênico , Deriva Genética , Heterogeneidade Genética , Variação Genética , Alemanha , Haplótipos , Migração Humana , Humanos , Masculino , Repetições de Microssatélites , Linhagem , Polônia , População/genética , Crescimento Demográfico , II Guerra Mundial
17.
PLoS One ; 8(5): e65441, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23734255

RESUMO

Located in the center of the Mediterranean landscape and with an extensive coastal line, the territory of what is today Italy has played an important role in the history of human settlements and movements of Southern Europe and the Mediterranean Basin. Populated since Paleolithic times, the complexity of human movements during the Neolithic, the Metal Ages and the most recent history of the two last millennia (involving the overlapping of different cultural and demic strata) has shaped the pattern of the modern Italian genetic structure. With the aim of disentangling this pattern and understanding which processes more importantly shaped the distribution of diversity, we have analyzed the uniparentally-inherited markers in ∼900 individuals from an extensive sampling across the Italian peninsula, Sardinia and Sicily. Spatial PCAs and DAPCs revealed a sex-biased pattern indicating different demographic histories for males and females. Besides the genetic outlier position of Sardinians, a North West-South East Y-chromosome structure is found in continental Italy. Such structure is in agreement with recent archeological syntheses indicating two independent and parallel processes of Neolithisation. In addition, date estimates pinpoint the importance of the cultural and demographic events during the late Neolithic and Metal Ages. On the other hand, mitochondrial diversity is distributed more homogeneously in agreement with older population events that might be related to the presence of an Italian Refugium during the last glacial period in Europe.


Assuntos
Cromossomos Humanos Y/genética , DNA Mitocondrial/genética , Variação Genética , Genética Populacional/métodos , Cromossomos Humanos Y/classificação , Análise por Conglomerados , DNA Mitocondrial/classificação , Feminino , Geografia , Haplótipos/genética , Humanos , Itália , Masculino , Filogenia , Análise de Componente Principal , Fatores de Tempo
18.
PLoS One ; 7(7): e41803, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22848614

RESUMO

Vlad III The Impaler, also known as Dracula, descended from the dynasty of Basarab, the first rulers of independent Wallachia, in present Romania. Whether this dynasty is of Cuman (an admixed Turkic people that reached Wallachia from the East in the 11(th) century) or of local Romanian (Vlach) origin is debated among historians. Earlier studies have demonstrated the value of investigating the Y chromosome of men bearing a historical name, in order to identify their genetic origin. We sampled 29 Romanian men carrying the surname Basarab, in addition to four Romanian populations (from counties Dolj, N = 38; Mehedinti, N = 11; Cluj, N = 50; and Brasov, N = 50), and compared the data with the surrounding populations. We typed 131 SNPs and 19 STRs in the non-recombinant part of the Y-chromosome in all the individuals. We computed a PCA to situate the Basarab individuals in the context of Romania and its neighboring populations. Different Y-chromosome haplogroups were found within the individuals bearing the Basarab name. All haplogroups are common in Romania and other Central and Eastern European populations. In a PCA, the Basarab group clusters within other Romanian populations. We found several clusters of Basarab individuals having a common ancestor within the period of the last 600 years. The diversity of haplogroups found shows that not all individuals carrying the surname Basarab can be direct biological descendants of the Basarab dynasty. The absence of Eastern Asian lineages in the Basarab men can be interpreted as a lack of evidence for a Cuman origin of the Basarab dynasty, although it cannot be positively ruled out. It can be therefore concluded that the Basarab dynasty was successful in spreading its name beyond the spread of its genes.


Assuntos
Cromossomos Humanos Y/genética , Nomes , Adulto , Haplótipos/genética , Humanos , Masculino , Análise de Componente Principal , Romênia
19.
PLoS One ; 7(3): e34288, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22470552

RESUMO

Afghanistan has held a strategic position throughout history. It has been inhabited since the Paleolithic and later became a crossroad for expanding civilizations and empires. Afghanistan's location, history, and diverse ethnic groups present a unique opportunity to explore how nations and ethnic groups emerged, and how major cultural evolutions and technological developments in human history have influenced modern population structures. In this study we have analyzed, for the first time, the four major ethnic groups in present-day Afghanistan: Hazara, Pashtun, Tajik, and Uzbek, using 52 binary markers and 19 short tandem repeats on the non-recombinant segment of the Y-chromosome. A total of 204 Afghan samples were investigated along with more than 8,500 samples from surrounding populations important to Afghanistan's history through migrations and conquests, including Iranians, Greeks, Indians, Middle Easterners, East Europeans, and East Asians. Our results suggest that all current Afghans largely share a heritage derived from a common unstructured ancestral population that could have emerged during the Neolithic revolution and the formation of the first farming communities. Our results also indicate that inter-Afghan differentiation started during the Bronze Age, probably driven by the formation of the first civilizations in the region. Later migrations and invasions into the region have been assimilated differentially among the ethnic groups, increasing inter-population genetic differences, and giving the Afghans a unique genetic diversity in Central Asia.


Assuntos
Cromossomos Humanos Y/genética , Etnicidade/genética , Afeganistão/etnologia , Humanos , Análise de Componente Principal
20.
Investig Genet ; 2: 13, 2011 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-21627798

RESUMO

BACKGROUND: The analysis of human Y-chromosome variation in the context of population genetics and forensics requires the genotyping of dozens to hundreds of selected single-nucleotide polymorphisms (SNPs). In the present study, we developed a 121-plex (121 SNPs in a single array) TaqMan array capable of distinguishing most haplogroups and subhaplogroups on the Y-chromosome human phylogeny in Europe. RESULTS: We present data from 264 samples from several European areas and ethnic groups. The array developed in this study shows >99% accuracy of assignation to the Y human phylogeny (with an average call rate of genotypes >96%). CONCLUSIONS: We have created and evaluated a robust and accurate Y-chromosome multiplex which minimises the possible errors due to mixup when typing the same sample in several independent reactions.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa