Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 24(13): 3608-22, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25792727

RESUMO

The heart is a muscle with high energy demands. Hence, most patients with mitochondrial disease produced by defects in the oxidative phosphorylation (OXPHOS) system are susceptible to cardiac involvement. The presentation of mitochondrial cardiomyopathy includes hypertrophic, dilated and left ventricular noncompaction, but the molecular mechanisms involved in cardiac impairment are unknown. One of the most frequent OXPHOS defects in humans frequently associated with cardiomyopathy is cytochrome c oxidase (COX) deficiency caused by mutations in COX assembly factors such as Sco1 and Sco2. To investigate the molecular mechanisms that underlie the cardiomyopathy associated with Sco deficiency, we have heart specifically interfered scox expression, the single Drosophila Sco orthologue. Cardiac-specific knockdown of scox reduces fly lifespan, and it severely compromises heart function and structure, producing dilated cardiomyopathy. Cardiomyocytes with low levels of scox have a significant reduction in COX activity and they undergo a metabolic switch from OXPHOS to glycolysis, mimicking the clinical features found in patients harbouring Sco mutations. The major cardiac defects observed are produced by a significant increase in apoptosis, which is dp53-dependent. Genetic and molecular evidence strongly suggest that dp53 is directly involved in the development of the cardiomyopathy induced by scox deficiency. Remarkably, apoptosis is enhanced in the muscle and liver of Sco2 knock-out mice, clearly suggesting that cell death is a key feature of the COX deficiencies produced by mutations in Sco genes in humans.


Assuntos
Apoptose , Cardiomiopatias/enzimologia , Modelos Animais de Doenças , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Miocárdio/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Cardiomiopatias/fisiopatologia , Drosophila/enzimologia , Drosophila/genética , Proteínas de Drosophila/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Humanos , Masculino , Proteína Supressora de Tumor p53/genética
2.
Nat Cell Biol ; 19(6): 677-688, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28481328

RESUMO

Bone marrow fibrosis is a critical component of primary myelofibrosis (PMF). However, the origin of the myofibroblasts that drive fibrosis is unknown. Using genetic fate mapping we found that bone marrow leptin receptor (Lepr)-expressing mesenchymal stromal lineage cells expanded extensively and were the fibrogenic cells in PMF. These stromal cells downregulated the expression of key haematopoietic-stem-cell-supporting factors and upregulated genes associated with fibrosis and osteogenesis, indicating fibrogenic conversion. Administration of imatinib or conditional deletion of platelet-derived growth factor receptor a (Pdgfra) from Lepr+ stromal cells suppressed their expansion and ameliorated bone marrow fibrosis. Conversely, activation of the PDGFRA pathway in bone marrow Lepr+ cells led to expansion of these cells and extramedullary haematopoiesis, features of PMF. Our data identify Lepr+ stromal lineage cells as the origin of myofibroblasts in PMF and suggest that targeting PDGFRA signalling could be an effective way to treat bone marrow fibrosis.


Assuntos
Células da Medula Óssea/metabolismo , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Miofibroblastos/metabolismo , Mielofibrose Primária/metabolismo , Receptores para Leptina/metabolismo , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/patologia , Linhagem da Célula , Movimento Celular , Proliferação de Células , Modelos Animais de Doenças , Genótipo , Hematopoese Extramedular , Mesilato de Imatinib/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/patologia , Osteogênese , Fenótipo , Mielofibrose Primária/genética , Mielofibrose Primária/patologia , Mielofibrose Primária/prevenção & controle , Inibidores de Proteínas Quinases/farmacologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores para Leptina/genética , Transdução de Sinais , Nicho de Células-Tronco , Trombopoetina/genética , Trombopoetina/metabolismo , Fatores de Tempo
3.
PLoS One ; 12(6): e0179194, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28617826

RESUMO

CF2 and Mef2 influence a variety of developmental muscle processes at distinct stages of development. Nevertheless, the exact nature of the CF2-Mef2 relationship and its effects on muscle building remain yet to be resolved. Here, we explored the regulatory role of CF2 in the Drosophila embryo muscle formation. To address this question and not having proper null CF2 mutants we exploited loss or gain of function strategies to study the contribution of CF2 to Mef2 transcription regulation and to muscle formation. Our data point to CF2 as a factor involved in the regulation of muscle final size and/or the number of nuclei present in each muscle. This function is independent of its role as a Mef2 collaborative factor in the transcriptional regulation of muscle-structural genes. Although Mef2 expression patterns do not change, reductions or increases in parallel in CF2 and Mef2 transcript abundance were observed in interfered and overexpressed CF2 embryos. Since CF2 expression variations yield altered Mef2 expression levels but with correct spatio-temporal Mef2 expression patterns, it can be concluded that only the mechanism controlling expression levels is de-regulated. Here, it is proposed that CF2 regulates Mef2 expression through a Feedforward Loop circuit.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/metabolismo , Embrião não Mamífero/embriologia , Desenvolvimento Muscular/fisiologia , Músculos/embriologia , Fatores de Regulação Miogênica/biossíntese , RNA Mensageiro/biossíntese , Fatores de Transcrição/metabolismo , Animais , Padronização Corporal/fisiologia , Núcleo Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Fatores de Regulação Miogênica/genética , RNA Mensageiro/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa