Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Gastroenterol Hepatol ; 46(4): 322-328, 2023 Apr.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-35688395

RESUMO

Unfortunately, there is a gap of understanding in the pathophysiology of chronic liver disease due to the lack of experimental models that exactly mimic the human disease. Additionally, the diagnosis of patients is very poor due to the lack of biomarkers than can detect the disease in early stages. Thus, it is of utmost interest the generation of a multidisciplinary consortium from different countries with a direct translation. The present reports the meeting of the 2021 Iberoamerican Consortium for the study of liver Cirrhosis, held online, in October 2021. The meeting, was focused on the recent advancements in the field of chronic liver disease and cirrhosis with a specific focus on cell pathobiology and liver regeneration, molecular and cellular targets involved in non-alcoholic hepatic steatohepatitis, alcoholic liver disease (ALD), both ALD and western diet, and end-stage liver cirrhosis and hepatocellular carcinoma. In addition, the meeting highlighted recent advances in targeted novel technology (-omics) and opening therapeutic avenues in this field of research.


Assuntos
Hepatopatias Alcoólicas , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Cirrose Hepática/etiologia , Hepatopatias Alcoólicas/terapia , Hepatopatia Gordurosa não Alcoólica/terapia , Hepatopatia Gordurosa não Alcoólica/patologia
2.
Nature ; 503(7475): 272-6, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24089213

RESUMO

The recognition of autophagy related 16-like 1 (ATG16L1) as a genetic risk factor has exposed the critical role of autophagy in Crohn's disease. Homozygosity for the highly prevalent ATG16L1 risk allele, or murine hypomorphic (HM) activity, causes Paneth cell dysfunction. As Atg16l1(HM) mice do not develop spontaneous intestinal inflammation, the mechanism(s) by which ATG16L1 contributes to disease remains obscure. Deletion of the unfolded protein response (UPR) transcription factor X-box binding protein-1 (Xbp1) in intestinal epithelial cells, the human orthologue of which harbours rare inflammatory bowel disease risk variants, results in endoplasmic reticulum (ER) stress, Paneth cell impairment and spontaneous enteritis. Unresolved ER stress is a common feature of inflammatory bowel disease epithelium, and several genetic risk factors of Crohn's disease affect Paneth cells. Here we show that impairment in either UPR (Xbp1(ΔIEC)) or autophagy function (Atg16l1(ΔIEC) or Atg7(ΔIEC)) in intestinal epithelial cells results in each other's compensatory engagement, and severe spontaneous Crohn's-disease-like transmural ileitis if both mechanisms are compromised. Xbp1(ΔIEC) mice show autophagosome formation in hypomorphic Paneth cells, which is linked to ER stress via protein kinase RNA-like endoplasmic reticulum kinase (PERK), elongation initiation factor 2α (eIF2α) and activating transcription factor 4 (ATF4). Ileitis is dependent on commensal microbiota and derives from increased intestinal epithelial cell death, inositol requiring enzyme 1α (IRE1α)-regulated NF-κB activation and tumour-necrosis factor signalling, which are synergistically increased when autophagy is deficient. ATG16L1 restrains IRE1α activity, and augmentation of autophagy in intestinal epithelial cells ameliorates ER stress-induced intestinal inflammation and eases NF-κB overactivation and intestinal epithelial cell death. ER stress, autophagy induction and spontaneous ileitis emerge from Paneth-cell-specific deletion of Xbp1. Genetically and environmentally controlled UPR function within Paneth cells may therefore set the threshold for the development of intestinal inflammation upon hypomorphic ATG16L1 function and implicate ileal Crohn's disease as a specific disorder of Paneth cells.


Assuntos
Enteropatias/fisiopatologia , Mucosa Intestinal/patologia , Celulas de Paneth/patologia , Animais , Autofagia/genética , Proteínas Relacionadas à Autofagia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Estresse do Retículo Endoplasmático/genética , Inflamação , Enteropatias/genética , Mucosa Intestinal/citologia , Camundongos , Fatores de Transcrição de Fator Regulador X , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Proteína 1 de Ligação a X-Box , eIF-2 Quinase/metabolismo
3.
Int Arch Allergy Immunol ; 173(1): 12-22, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28486236

RESUMO

BACKGROUND: Allergic sensitization might be influenced by the lipids present in allergens, which can be recognized by natural killer T (NKT) cells on antigen-presenting cells (APCs). The aim of this study was to analyze the effect of olive pollen lipids in human APCs, including monocytes as well as monocyte-derived macrophages (Mϕ) and dendritic cells (DCs). METHODS: Lipids were extracted from olive (Olea europaea) pollen grains. Invariant (i)NKT cells, monocytes, Mϕ, and DCs were obtained from buffy coats of healthy blood donors, and their cell phenotype was determined by flow cytometry. iNKT cytotoxicity was measured using a lactate dehydrogenase assay. Gene expression of CD1A and CD1D was performed by RT-PCR, and the production of IL-6, IL-10, IL-12, and TNF-α cytokines by monocytes, Mϕ, and DCs was measured by ELISA. RESULTS: Our results showed that monocytes and monocyte-derived Mϕ treated with olive pollen lipids strongly activate iNKT cells. We observed several phenotypic modifications in the APCs upon exposure to pollen-derived lipids. Both Mϕ and monocytes treated with olive pollen lipids showed an increase in CD1D gene expression, whereas upregulation of cell surface CD1d protein occurred only in Mϕ. Furthermore, DCs differentiated in the presence of human serum enhance their surface CD1d expression when exposed to olive pollen lipids. Finally, olive pollen lipids were able to stimulate the production of IL-6 but downregulated the production of lipopolysaccharide- induced IL-10 by Mϕ. CONCLUSIONS: Olive pollen lipids alter the phenotype of monocytes, Mϕ, and DCs, resulting in the activation of NKT cells, which have the potential to influence allergic immune responses.


Assuntos
Alérgenos/imunologia , Células Apresentadoras de Antígenos/imunologia , Lipídeos/imunologia , Células T Matadoras Naturais/imunologia , Olea/imunologia , Pólen/imunologia , Antígenos CD1d/imunologia , Citocinas/imunologia , Humanos
4.
J Allergy Clin Immunol ; 138(2): 558-567.e11, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27177779

RESUMO

BACKGROUND: Allergen immunotherapy (AIT) is the only curative treatment for allergy. AIT faces pitfalls related to efficacy, security, duration, and patient compliance. Novel vaccines overcoming such inconveniences are in demand. OBJECTIVES: We sought to study the immunologic mechanisms of action for novel vaccines targeting dendritic cells (DCs) generated by coupling glutaraldehyde-polymerized grass pollen allergoids to nonoxidized mannan (PM) compared with glutaraldehyde-polymerized allergoids (P) or native grass pollen extracts (N). METHODS: Skin prick tests and basophil activation tests with N, P, or PM were performed in patients with grass pollen allergy. IgE-blocking experiments, flow cytometry, confocal microscopy, cocultures, suppression assays, real-time quantitative PCR, ELISAs, and ELISpot assays were performed to assess allergen capture by human DCs and T-cell responses. BALB/c mice were immunized with PM, N, or P. Antibody levels, cytokine production by splenocytes, and splenic forkhead box P3 (FOXP3)(+) regulatory T (Treg) cells were quantified. Experiments with oxidized PM were also performed. RESULTS: PM displays in vivo hypoallergenicity, induces potent blocking antibodies, and is captured by human DCs much more efficiently than N or P by mechanisms depending on mannose receptor- and dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin-mediated internalization. PM endorses human DCs to generate functional FOXP3(+) Treg cells through programmed death ligand 1. Immunization of mice with PM induces a shift to nonallergic responses and increases the frequency of splenic FOXP3(+) Treg cells. Mild oxidation impairs these effects in human subjects and mice, demonstrating the essential role of preserving the carbohydrate structure of mannan. CONCLUSIONS: Allergoids conjugated to nonoxidized mannan represent suitable vaccines for AIT. Our findings might also be of the utmost relevance to development of therapeutic interventions in other immune tolerance-related diseases.


Assuntos
Alérgenos/imunologia , Antígeno B7-H1/metabolismo , Células Dendríticas/imunologia , Mananas , Extratos Vegetais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Vacinas/imunologia , Adjuvantes Imunológicos , Alérgenos/metabolismo , Alergoides , Animais , Anticorpos/imunologia , Anticorpos Bloqueadores/imunologia , Citocinas/metabolismo , Células Dendríticas/metabolismo , Humanos , Tolerância Imunológica/imunologia , Camundongos , Poaceae/imunologia , Pólen/imunologia , Rinite Alérgica Sazonal/imunologia , Rinite Alérgica Sazonal/metabolismo
5.
J Allergy Clin Immunol ; 131(5): 1393-9.e5, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23265858

RESUMO

BACKGROUND: Invariant natural killer T (iNKT) cells recognize lipids presented by CD1d and have been implicated in the pathogenesis of allergic asthma. Recognition of plant pollen lipids by iNKT cells and their role in allergic responses are poorly defined. OBJECTIVE: Our goal was to investigate whether iNKT cells can be activated by monocyte-derived dendritic cells (DCs) exposed to lipid antigens from Olea europaea. METHODS: DCs generated in vitro were exposed to O europaea pollen grains or lipids isolated from them. Expression of lipid-presenting molecules (CD1), as well as maturation markers (HLA-DR, HLA-I, CD86, and CD80 molecules), on DCs was analyzed. iNKT cell activation after coculture with DCs was evaluated based on expansion, cytokine production, and cytotoxicity tests. RESULTS: DCs upregulated CD1d and CD86 expression and downregulated CD1a expression after exposure to a whole extract of olive pollen lipids. CD1d and CD1a were regulated at the transcriptional level in a peroxisome proliferator-activated receptor γ activation-dependent manner. Polar lipids, diacylglycerols, free fatty acids, and triacylglycerols isolated from pollen grains upregulate CD1d. The increase in CD1d expression on the DC cell surface induced by polar lipids was not regulated at the RNA level. iNKT cells efficiently recognize DCs treated with the different lipids isolated from olive pollen grains. CONCLUSIONS: Lipids from O europaea pollen upregulate CD1d and CD86 molecules on DCs, which are then able to activate iNKT cells through a CD1d-dependent pathway.


Assuntos
Antígenos CD1d/biossíntese , Células Dendríticas/imunologia , Metabolismo dos Lipídeos/imunologia , Ativação Linfocitária/imunologia , Células T Matadoras Naturais/imunologia , Olea/imunologia , Pólen/imunologia , Regulação para Cima/imunologia , Alérgenos/efeitos adversos , Alérgenos/imunologia , Antígenos CD1d/genética , Antígenos CD1d/fisiologia , Células Dendríticas/metabolismo , Diglicerídeos/imunologia , Humanos , Imunofenotipagem , Metabolismo dos Lipídeos/genética , Ativação Linfocitária/genética , Células T Matadoras Naturais/metabolismo , Olea/efeitos adversos , Pólen/efeitos adversos
6.
Cells ; 13(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38727261

RESUMO

Chimeric antigen receptor (CAR)-T cell therapy has proven to be a powerful treatment for hematological malignancies. The situation is very different in the case of solid tumors, for which no CAR-T-based therapy has yet been approved. There are many factors contributing to the absence of response in solid tumors to CAR-T cells, such as the immunosuppressive tumor microenvironment (TME), T cell exhaustion, or the lack of suitable antigen targets, which should have a stable and specific expression on tumor cells. Strategies being developed to improve CAR-T-based therapy for solid tumors include the use of new-generation CARs such as TRUCKs or bi-specific CARs, the combination of CAR therapy with chemo- or radiotherapy, the use of checkpoint inhibitors, and the use of oncolytic viruses. Furthermore, despite the scarcity of targets, a growing number of phase I/II clinical trials are exploring new solid-tumor-associated antigens. Most of these antigens are of a protein nature; however, there is a clear potential in identifying carbohydrate-type antigens associated with tumors, or carbohydrate and proteoglycan antigens that emerge because of aberrant glycosylations occurring in the context of tumor transformation.


Assuntos
Imunoterapia Adotiva , Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Neoplasias/terapia , Neoplasias/imunologia , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/imunologia , Microambiente Tumoral/imunologia , Antígenos de Neoplasias/imunologia , Linfócitos T/imunologia , Animais
7.
Front Nutr ; 11: 1393014, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38699545

RESUMO

Background: Alcohol misuse, binge drinking pattern, and gender-specific effects in the middle-aged population has been clearly underestimated. In the present study, we focused on understanding gender-specific effects of alcohol exposure on the gut-liver axis and the role of gut microbiota in modulating gender-specific responses to alcohol consumption. Methods: Fifty-two-week-old female and male C57BL/6 mice were fasted for 12 h, and then administered a single oral dose of ethanol (EtOH) (6 g/kg). Controls were given a single dose of PBS. Animals were sacrificed 8 h later. Alternatively, fecal microbiota transplantation (FMT) was performed in 52-week-old male mice from female donors of the same age. Permeability of the large intestine (colon), gut microbiota, liver injury, and inflammation was thoroughly evaluated in all groups. Results: Middle-aged male mice exposed to EtOH showed a significant increase in gut permeability in the large intestine, evaluated by FITC-dextran assay and ZO-1, OCCLUDIN and MUCIN-2 immuno-staining, compared to PBS-treated animals, whilst female mice of the same age also increased their gut permeability, but displayed a partially maintained intestinal barrier integrity. Moreover, there was a significant up-regulation of TLRs and markers of hepatocellular injury, cell death (AST, TUNEL-positive cells) and lipid accumulation (ORO) in male mice after EtOH exposure. Interestingly, FMT from female donors to male mice reduced gut leakiness, modified gut microbiota composition, ameliorated liver injury and inflammation, TLR activation and the senescence phenotype of middle-aged mice. Conclusion: Our findings highlighted the relevance of gender in middle-aged individuals who are exposed to alcohol in the gut-liver axis. Moreover, our study revealed that gender-specific microbiota transplantation might be a plausible therapy in the management of alcohol-related disorders during aging.

8.
BMC Immunol ; 14: 3, 2013 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-23336327

RESUMO

BACKGROUND: The T cell antigen receptors (TCR) of αß and γδ T lymphocytes are believed to assemble in a similar fashion in humans. Firstly, αß or γδ TCR chains incorporate a CD3δε dimer, then a CD3γε dimer and finally a ζζ homodimer, resulting in TCR complexes with the same CD3 dimer stoichiometry. Partial reduction in the expression of the highly homologous CD3γ and CD3δ proteins would thus be expected to have a similar impact in the assembly and surface expression of both TCR isotypes. To test this hypothesis, we compared the surface TCR expression of primary αß and γδ T cells from healthy donors carrying a single null or leaky mutation in CD3G (γ+/-) or CD3D (δ+/-, δ+/leaky) with that of normal controls. RESULTS: Although the partial reduction in the intracellular availability of CD3γ or CD3δ proteins was comparable as a consequence of the mutations, surface TCR expression measured with anti-CD3ε antibodies was significantly more decreased in γδ than in αß T lymphocytes in CD3γ+/- individuals, whereas CD3δ+/- and CD3δ+/leaky donors showed a similar decrease of surface TCR in both T cell lineages. Therefore, surface γδ TCR expression was more dependent on available CD3γ than surface αß TCR expression. CONCLUSIONS: The results support the existence of differential structural constraints in the two human TCR isotypes regarding the incorporation of CD3γε and CD3δε dimers, as revealed by their discordant surface expression behaviour when confronted with reduced amounts of CD3γ, but not of the homologous CD3δ chain. A modified version of the prevailing TCR assembly model is proposed to accommodate these new data.


Assuntos
Complexo CD3/imunologia , Haploinsuficiência/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Membrana Celular/metabolismo , Humanos , Modelos Imunológicos , Linfócitos T/imunologia
9.
Methods Mol Biol ; 2673: 123-130, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37258910

RESUMO

The advent of computational approaches has accelerated the identification of vaccine candidates like epitope peptides. However, epitope peptides are usually very poorly immunogenic and adequate platforms are required with adjuvant capacity to verity immunogenicity and antigenicity of vaccine subunits in vivo. Silicon microparticles are being developed as potential new adjuvants for vaccine delivery due to their physicochemical properties. This chapter explains the methodology to fabricate and functionalize mesoporous silicon microparticles (MSMPs) which can be loaded with antigens of different nature, such as viral peptides, proteins, or carbohydrates, and this strategy is particularly suitable for delivery of epitopes identified by computer.


Assuntos
Silício , Vacinas , Silício/química , Sistemas de Liberação de Medicamentos/métodos , Peptídeos , Adjuvantes Imunológicos , Epitopos , Adjuvantes Farmacêuticos
10.
Front Immunol ; 14: 1111569, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36817489

RESUMO

Background: Immunocompromised patients have an increased risk of developing severe COVID disease, as well as a tendency to suboptimal responses to vaccines. The objective of this study was to evaluate the specific cellular and humoral adaptive immune responses of a cohort of kidney transplant recipients (KTR) after 3 doses of mRNA-1273 vaccine and to determinate the main factors involved. Methods: Prospective observational study in 221 KTR (149 non infected), 55 healthy volunteers (HV) and 23 dialysis patients (DP). We evaluated anti-spike (by quantitative chemiluminescence immunoassay) and anti-nucleocapsid IgG (ELISA), percentage of TCD4+ and TCD8+ lymphocytes producing IFNγ against S-protein by intracellular flow cytometry after Spike-specific 15-mer peptide stimulation and serum neutralizing activity (competitive ELISA) at baseline and after vaccination. Results: Among COVID-19 naïve KTR, 54.2% developed cellular and humoral response after the third dose (vs 100% in DP and 91.7% in HV), 18% only showed cell-mediated response, 22.2% exclusively antibody response and 5.6% none. A correlation of neutralizing activity with both the IgG titer (r=0.485, p<0.001) and the percentage of S-protein-specific IFNγ-producing CD8-T cells (r=0.198, p=0.049) was observed. Factors related to the humoral response in naïve KTR were: lymphocytes count pre-vaccination >1000/mm3 [4.68 (1.72-12.73, p=0.003], eGFR>30 mL/min [7.34(2.72-19.84), p<0.001], mTOR inhibitors [6.40 (1.37-29.86), p=0.018]. Infected KTR developed a stronger serologic response than naïve patients (96.8 vs 75.2%, p<0.001). Conclusions: KTR presented poor cellular and humoral immune responses following vaccination with mRNA-1273. The immunosuppression degree and kidney function of these patients play an important role, but the only modifiable factor with a high impact on humoral immunogenicity after a booster dose was an immunosuppressive therapy including a mTOR inhibitor. Clinical trials are required to confirm these results.


Assuntos
COVID-19 , Transplante de Rim , Humanos , Imunidade Humoral , Vacina de mRNA-1273 contra 2019-nCoV , Inibidores de MTOR , SARS-CoV-2 , Imunoglobulina G , Serina-Treonina Quinases TOR
11.
Front Immunol ; 14: 1185517, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457727

RESUMO

Introduction: The Unfolded Protein Response, a mechanism triggered by the cell in response to Endoplasmic reticulum stress, is linked to inflammatory responses. Our aim was to identify novel Unfolded Protein Response-mechanisms that might be involved in triggering or perpetuating the inflammatory response carried out by the Intestinal Epithelial Cells in the context of Inflammatory Bowel Disease. Methods: We analyzed the transcriptional profile of human Intestinal Epithelial Cell lines treated with an Endoplasmic Reticulum stress inducer (thapsigargin) and/or proinflammatory stimuli. Several genes were further analyzed in colonic biopsies from Ulcerative Colitis patients and healthy controls. Lastly, we generated Caco-2 cells lacking HMGCS2 by CRISPR Cas-9 and analyzed the functional implications of its absence in Intestinal Epithelial Cells. Results: Exposure to a TLR ligand after thapsigargin treatment resulted in a powerful synergistic modulation of gene expression, which led us to identify new genes and pathways that could be involved in inflammatory responses linked to the Unfolded Protein Response. Key differentially expressed genes in the array also exhibited transcriptional alterations in colonic biopsies from active Ulcerative Colitis patients, including NKG2D ligands and the enzyme HMGCS2. Moreover, functional studies showed altered metabolic responses and epithelial barrier integrity in HMGCS2 deficient cell lines. Conclusion: We have identified new genes and pathways that are regulated by the Unfolded Protein Response in the context of Inflammatory Bowel Disease including HMGCS2, a gene involved in the metabolism of Short Chain Fatty Acids that may have an important role in intestinal inflammation linked to Endoplasmic Reticulum stress and the resolution of the epithelial damage.


Assuntos
Colite Ulcerativa , Doenças Inflamatórias Intestinais , Humanos , Colite Ulcerativa/patologia , Células CACO-2 , Tapsigargina , Estresse do Retículo Endoplasmático/genética , Doenças Inflamatórias Intestinais/metabolismo , Células Epiteliais/metabolismo , Hidroximetilglutaril-CoA Sintase
12.
Cell Death Dis ; 14(8): 514, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563155

RESUMO

Progressive hepatic damage and fibrosis are major features of chronic liver diseases of different etiology, yet the underlying molecular mechanisms remain to be fully defined. N-RAS, a member of the RAS family of small guanine nucleotide-binding proteins also encompassing the highly homologous H-RAS and K-RAS isoforms, was previously reported to modulate cell death and renal fibrosis; however, its role in liver damage and fibrogenesis remains unknown. Here, we approached this question by using N-RAS deficient (N-RAS-/-) mice and two experimental models of liver injury and fibrosis, namely carbon tetrachloride (CCl4) intoxication and bile duct ligation (BDL). In wild-type (N-RAS+/+) mice both hepatotoxic procedures augmented N-RAS expression in the liver. Compared to N-RAS+/+ counterparts, N-RAS-/- mice subjected to either CCl4 or BDL showed exacerbated liver injury and fibrosis, which was associated with enhanced hepatic stellate cell (HSC) activation and leukocyte infiltration in the damaged liver. At the molecular level, after CCl4 or BDL, N-RAS-/- livers exhibited augmented expression of necroptotic death markers along with JNK1/2 hyperactivation. In line with this, N-RAS ablation in a human hepatocytic cell line resulted in enhanced activation of JNK and necroptosis mediators in response to cell death stimuli. Of note, loss of hepatic N-RAS expression was characteristic of chronic liver disease patients with fibrosis. Collectively, our study unveils a novel role for N-RAS as a negative controller of the progression of liver injury and fibrogenesis, by critically downregulating signaling pathways leading to hepatocyte necroptosis. Furthermore, it suggests that N-RAS may be of potential clinical value as prognostic biomarker of progressive fibrotic liver damage, or as a novel therapeutic target for the treatment of chronic liver disease.


Assuntos
Cirrose Hepática , Neuroblastoma , Animais , Humanos , Camundongos , Tetracloreto de Carbono/toxicidade , Células Estreladas do Fígado/metabolismo , Fígado/metabolismo , Cirrose Hepática/genética , Cirrose Hepática/tratamento farmacológico , Neuroblastoma/patologia , Oncogenes
13.
Cell Death Dis ; 13(2): 143, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35145060

RESUMO

Acetaminophen (APAP) hepatotoxicity induces endoplasmic reticulum (ER) stress which triggers the unfolded protein response (UPR) in hepatocytes. However, the mechanisms underlying ER stress remain poorly understood, thus reducing the options for exploring new pharmacological therapies for patients with hyperacute liver injury. Eight-to-twelve-week-old C57BL/6J Xbp1-floxed (Xbp1f/f) and hepatocyte-specific knockout Xbp1 mice (Xbp1∆hepa) were challenged with either high dose APAP [500 mg/kg] and sacrificed at early (1-2 h) and late (24 h) stages of hepatotoxicity. Histopathological examination of livers, immunofluorescence and immunohistochemistry, Western blot, real time (RT)-qPCR studies and transmission electron microscopy (TEM) were performed. Pharmacological inhibition of XBP1 using pre-treatment with STF-083010 [STF, 75 mg/kg] and autophagy induction with Rapamycin [RAPA, 8 mg/kg] or blockade with Chloroquine [CQ, 60 mg/kg] was also undertaken in vivo. Cytoplasmic expression of XBP1 coincided with severity of human and murine hyperacute liver injury. Transcriptional and translational activation of the UPR and sustained activation of JNK1/2 were major events in APAP hepatotoxicity, both in a human hepatocytic cell line and in a preclinical model. Xbp1∆hepa livers showed decreased UPR and JNK1/2 activation but enhanced autophagy in response to high dose APAP. Additionally, blockade of XBP1 splicing by STF, mitigated APAP-induced liver injury and without non-specific off-target effects (e.g., CYP2E1 activity). Furthermore, enhanced autophagy might be responsible for modulating CYP2E1 activity in Xbp1∆hepa animals. Genetic and pharmacological inhibition of Xbp1 specifically in hepatocytes ameliorated APAP-induced liver injury by enhancing autophagy and decreasing CYP2E1 expression. These findings provide the basis for the therapeutic restoration of ER stress and/or induction of autophagy in patients with hyperacute liver injury.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Proteína 1 de Ligação a X-Box , Acetaminofen/toxicidade , Animais , Autofagia , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Citocromo P-450 CYP2E1/metabolismo , Hepatócitos/metabolismo , Humanos , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 1 de Ligação a X-Box/antagonistas & inibidores , Proteína 1 de Ligação a X-Box/genética
14.
Biochem Biophys Res Commun ; 411(3): 632-6, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21777569

RESUMO

Mucosal-associated invariant T (MAIT) cells are a population of non-conventional T-lymphocytes which are restricted by the MHC-related 1 (MR1) molecule. MR1 is a non-classical member of the MHC class I family of proteins, it is unknown if MR1 presents any kind of antigens to MAIT cells. In the present manuscript we describe that detection of MR1 on the cell surface by conformation-dependent monoclonal antibodies is enhanced upon culture the cells at 26°C; we also show that detection of MR1 on the cell surface is lost after treating the cells at pH 3.3 as in the case of classical MHC class I molecules. Finally, the re-expression of MR1 on the cell surface is independent of proteasome. Taken together these results strongly suggest that MR1 needs to bind proteasome-independent ligands in order to properly reach the cell surface.


Assuntos
Ácidos/metabolismo , Membrana Celular/metabolismo , Temperatura Baixa , Antígenos de Histocompatibilidade Classe I/biossíntese , Complexo de Endopeptidases do Proteassoma/metabolismo , Ácidos/farmacologia , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Antígenos de Histocompatibilidade Menor
15.
Cell Immunol ; 271(1): 62-6, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21764047

RESUMO

Antigen recognition by T-lymphocytes through the T-cell antigen receptor, TCR-CD3, is a central event in the initiation of an immune response. CD3 proteins may have redundant as well as specific contributions to the intracellular propagation of TCR-mediated signals. However, to date, the relative role that each CD3 chain plays in signaling is controversial. In order to examine the roles of CD3γ chain in TCR signaling, we analyzed proximal and distal signaling events in human CD3γ(-/-) primary and Herpesvirus saimiri (HVS)-transformed T cells. Following TCR-CD3 engagement, certain early TCR signaling pathways (ZAP-70, ERK, p38 and mTORC2 phosphorylation, and actin polymerization) were comparable with control HVS-transformed T cells. However, other signaling pathways were affected, such TCRζ phosphorylation, indicating that the CD3γ chain contributes to improve TCR signaling efficiency and survival. On the other hand, CD3γ(-/-) primary invariant NKT cells (iNKT cells) showed a normal expansion in response to alpha-galactosylceramide (α-GalCer) and TCRVß11(bright) iNKT cells were preferentially selected in this in vitro culture system, perhaps as a consequence of selective events in the thymus. Our results collectively indicate that a TCR lacking CD3γ can propagate a number of signals through the remaining invariant chains, likely the homologous CD3δ chain, which replaces it at the mutant TCR.


Assuntos
Complexo CD3/imunologia , Células T Matadoras Naturais/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Adulto , Animais , Complexo CD3/genética , Complexo CD3/metabolismo , Linhagem Celular Transformada , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Feminino , Citometria de Fluxo , Galactosilceramidas/imunologia , Galactosilceramidas/farmacologia , Humanos , Immunoblotting , Masculino , Camundongos , Camundongos Knockout , Mutação , Células T Matadoras Naturais/metabolismo , Fosforilação , Complexo Receptor-CD3 de Antígeno de Linfócitos T/imunologia , Complexo Receptor-CD3 de Antígeno de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Adulto Jovem
16.
J Clin Med ; 10(5)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802486

RESUMO

The outbreak of the novel coronavirus SARS-CoV-2 epidemic has rapidly spread and still poses a serious threat to healthcare systems worldwide. In the present study, electronic medical records containing clinical indicators related to liver injury in 799 COVID-19-confirmed patients admitted to a hospital in Madrid (Spain) were extracted and analyzed. Correlation between liver injury and disease outcome was also evaluated. Serum levels of Alanine aminotransferase (ALT), Aspartate aminotransferase (AST), Gamma-glutamyltransferase (GGT), Alkaline phosphatase (ALP), Lactate dehydrogenase (LDH) and AST/ALT ratio were elevated above the Upper Limit of Normal (ULN) in 25.73%, 49.17%, 34.62%, 24.21%, 55.84% and 75% of patients, respectively. Interestingly, significant positive correlation between LDH levels and the AST/ALT ratio with disease outcome was found. Our data showed that SARS-CoV-2 virus infection leads to mild, but significant changes in serum markers of liver injury. The upregulated LDH levels as well as AST/ALT ratios upon admission may be used as additional diagnostic characteristic for COVID-19 patients.

17.
Biomedicines ; 9(10)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34680405

RESUMO

OBJECTIVES: Lately, many countries have restricted or even banned transfat, and palm oil has become a preferred replacement for food manufacturers. Whether palm oil is potentially an unhealthy food mainly due to its high content of saturated Palmitic Acid (PA) is a matter of debate. The aim of this study was to test whether qualitative aspects of diet such as levels of PA and the fat source are risk factors for Metabolic Syndrome (MS) and Metabolic Associated Fatty Liver Disease (MAFLD). METHODS: C57BL/6 male mice were fed for 14 weeks with three types of Western diet (WD): 1. LP-WD-low concentration of PA (main fat source-corn and soybean oils); 2. HP-WD-high concentration of PA (main fat source-palm oil); 3. HP-Trans-WD-high concentration of PA (mainly transfat). RESULTS: All types of WD caused weight gain, adipocyte enlargement, hepatomegaly, lipid metabolism alterations, and steatohepatitis. Feeding with HP diets led to more prominent obesity, hypercholesterolemia, stronger hepatic injury, and fibrosis. Only the feeding with HP-Trans-WD resulted in glucose intolerance and elevation of serum transaminases. Brief withdrawal of WDs reversed MS and signs of MAFLD. However, mild hepatic inflammation was still detectable in HP groups. CONCLUSIONS: HP and HP-Trans-WD play a crucial role in the genesis of MS and MAFLD.

18.
Cancers (Basel) ; 14(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35008241

RESUMO

Fibropolycystic liver disease is characterized by hyperproliferation of the biliary epithelium and the formation of multiple dilated cysts, a process associated with unfolded protein response (UPR). In the present study, we aimed to understand the mechanisms of cyst formation and UPR activation in hepatocytic c-Jun N-terminal kinase 1/2 (Jnk1/2) knockout mice. Floxed JNK1/2 (Jnkf/f) and Jnk∆hepa animals were sacrificed at different time points during progression of liver disease. Histological examination of specimens evidenced the presence of collagen fiber deposition, increased α-smooth muscle actin (αSMA), infiltration of CD45, CD11b and F4/80 cells and proinflammatory cytokines (Tnf, Tgfß1) and liver injury (e.g., ALT, apoptosis and Ki67-positive cells) in Jnk∆hepa compared with Jnkf/f livers from 32 weeks of age. This was associated with activation of effectors of the UPR, including BiP/GRP78, CHOP and spliced XBP1. Tunicamycin (TM) challenge strongly induced ER stress and fibrosis in Jnk∆hepa animals compared with Jnkf/f littermates. Finally, thioacetamide (TAA) administration to Jnk∆hepa mice induced UPR activation, peribiliary fibrosis, liver injury and markers of biliary proliferation and cholangiocarcinoma (CCA). Orthoallografts of DEN/CCl4-treated Jnk∆hepa liver tissue triggered malignant CCA. Altogether, these results suggest that activation of the UPR in conjunction with fibrogenesis might trigger hepatic cystogenesis and early stages of CCA.

19.
Curr Opin Gastroenterol ; 26(4): 318-26, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20495455

RESUMO

PURPOSE OF REVIEW: To provide an overview of the emerging role of cellular stress responses in inflammatory bowel disease (IBD). RECENT FINDINGS: The unfolded protein response (UPR) is a primitive cellular pathway that is engaged when responding to endoplasmic reticulum stress and regulates autophagy. Highly secretory cells such as Paneth cells and goblet cells in the intestines are particularly susceptible to endoplasmic reticulum stress and are exceedingly dependent upon a properly functioning UPR to maintain cellular viability and homeostasis. Primary genetic abnormalities within the components of the UPR (e.g. XBP1, ARG2, ORMDL3), genes that encode proteins reliant upon a robust secretory pathway (e.g. MUC2, HLAB27) and environmental factors that create disturbances in the UPR (e.g. microbial products and inflammatory cytokines) are important factors in the primary development and/or perpetuation of intestinal inflammation. SUMMARY: Endoplasmic reticulum stress is an important new pathway involved in the development of intestinal inflammation associated with IBD and likely other intestinal inflammatory disorders.


Assuntos
Retículo Endoplasmático/imunologia , Doenças Inflamatórias Intestinais/imunologia , Mucosa Intestinal/imunologia , Resposta a Proteínas não Dobradas/imunologia , Animais , Autofagia/imunologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Regulação da Expressão Gênica/imunologia , Predisposição Genética para Doença , Células Caliciformes/imunologia , Humanos , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/patologia , Celulas de Paneth/imunologia , Polimorfismo Genético , Estresse Fisiológico/imunologia , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia , Fatores de Transcrição/metabolismo
20.
Front Pharmacol ; 11: 603771, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33408632

RESUMO

Binge drinking, i.e., heavy episodic drinking in a short time, has recently become an alarming societal problem with negative health impact. However, the harmful effects of acute alcohol injury in the gut-liver axis remain elusive. Hence, we focused on the physiological and pathological changes and the underlying mechanisms of experimental binge drinking in the context of the gut-liver axis. Eight-week-old mice with a C57BL/6 background received a single dose (p.o.) of ethanol (EtOH) [6 g/kg b.w.] as a preclinical model of acute alcohol injury. Controls received a single dose of PBS. Mice were sacrificed 8 h later. In parallel, HepaRGs and Caco-2 cells, human cell lines of differentiated hepatocytes and intestinal epithelial cells intestinal epithelial cells (IECs), respectively, were challenged in the presence or absence of EtOH [0-100 mM]. Extracellular vesicles (EVs) isolated by ultracentrifugation from culture media of IECs were added to hepatocyte cell cultures. Increased intestinal permeability, loss of zonula occludens-1 (ZO-1) and MUCIN-2 expression, and alterations in microbiota-increased Lactobacillus and decreased Lachnospiraceae species-were found in the large intestine of mice exposed to EtOH. Increased TUNEL-positive cells, infiltration of CD11b-positive immune cells, pro-inflammatory cytokines (e.g., tlr4, tnf, il1ß), and markers of lipid accumulation (Oil Red O, srbep1) were evident in livers of mice exposed to EtOH, particularly in females. In vitro experiments indicated that EVs released by IECs in response to ethanol exerted a deleterious effect on hepatocyte viability and lipid accumulation. Overall, our data identified a novel mechanism responsible for driving hepatic injury in the gut-liver axis, opening novel avenues for therapy.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa