Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Vet Res ; 17(1): 72, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33546699

RESUMO

BACKGROUND: Streptococcus suis is an important pathogen that causes severe diseases mostly in weaned piglets. Only available vaccines in the field are those composed of killed bacteria (bacterins) but data about their effectiveness are missing. We report here a field study on the immunological response induced by an autogenous vaccine applied in pre-parturient sows. Using a farm with recurrent S. suis serotype 7 problems, the study was divided in three experiments: (I) Sows received the vaccine at 7 and 3 weeks pre-farrowing. (II) Replacement gilts introduced to the herd received the vaccine at 4 and 7 weeks after their entry in quarantine and a boost 3 weeks pre-farrowing. (III) Gilts from experiment II received another boost 3 weeks pre-farrowing at their 3rd/4th parity. Levels, isotype profile and opsonophagocytosis capacity of the serum antibodies induced by vaccination were evaluated in sows and maternal immunity in piglets. RESULTS: In sows (I), the vaccine induced a slight, albeit significant, increase in anti-S. suis total antibodies after 2 doses when compare to basal levels already present in the animals. These antibodies showed a high opsonic capacity in vitro, highlighting their potential protective capacity. A gilt vaccination program of 3 doses (II) resulted in a significant increase in anti-S. suis total antibodies. Levels of maternal immunity transferred to piglets were high at 7 days of age, but rapidly decreased by 18 days of age. A gilt vaccination program ensued a higher transfer of maternal immunity in piglets compared to control animals; nevertheless duration was not improved at 18 day-old piglets. The vaccine response in both gilts and sows was mainly composed of IgG1 subclass, which was also the main Ig transferred to piglets. IgG2 subclass was also found in piglets, but its level was not increased by vaccination. Finally, a recall IgG1 response was induced by another boost vaccination at 3rd/4th parity (III), indicating that the vaccine induced the establishment of a lasting memory response in the herd. CONCLUSIONS: Overall, an optimal gilt/sow vaccination program might result in increased antibody responses; nevertheless duration of maternal immunity would not last long enough to protect post-weaned piglets.


Assuntos
Autovacinas/administração & dosagem , Infecções Estreptocócicas/veterinária , Streptococcus suis/imunologia , Doenças dos Suínos/prevenção & controle , Animais , Animais Recém-Nascidos , Anticorpos Antibacterianos/sangue , Feminino , Imunoglobulina G/sangue , Gravidez , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/prevenção & controle , Sus scrofa , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/microbiologia , Vacinação/veterinária
2.
BMC Vet Res ; 15(1): 448, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31823789

RESUMO

BACKGROUND: Streptococcus suis is a major swine pathogen causing arthritis, meningitis and sudden death in post-weaning piglets and is also a zoonotic agent. S. suis comprises 35 different serotypes of which the serotype 2 is the most prevalent in both pigs and humans. In the absence of commercial vaccines, bacterins (mostly autogenous), are used in the field, with controversial results. In the past years, the focus has turned towards the development of sub-unit vaccine candidates. However, published results are sometimes contradictory regarding the protective effect of a same candidate. Moreover, the adjuvant used may significantly influence the protective capacity of a given antigen. This study focused on two protective candidates, the dipeptidyl peptidase IV (DPPIV) and the enolase (SsEno). Both proteins are involved in S. suis pathogenesis, and while contradictory protection results have been obtained with SsEno in the past, no data on the protective capacity of DPPIV was available. RESULTS: Results showed that among all the field strains tested, 86 and 88% were positive for the expression of the SsEno and DPPIV proteins, respectively, suggesting that they are widely expressed by strains of different serotypes. However, no protection was obtained after two vaccine doses in a CD-1 mouse model of infection, regardless of the use of four different adjuvants. Even though no protection was obtained, significant amounts of antibodies were produced against both antigens, and this regardless of the adjuvant used. CONCLUSIONS: Taken together, these results demonstrate that S. suis DPPIV and SsEno are probably not good vaccine candidates, at least not in the conditions evaluated in this study. Further studies in the natural host (pig) should still be carried out. Moreover, this work highlights the importance of confirming results obtained by different research groups.


Assuntos
Dipeptidil Peptidase 4 , Fosfopiruvato Hidratase , Streptococcus suis/imunologia , Vacinas de Subunidades Antigênicas/farmacologia , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/farmacologia , Animais , Anticorpos Antibacterianos , Modelos Animais de Doenças , Camundongos , Subunidades Proteicas/farmacologia , Infecções Estreptocócicas/imunologia , Vacinas Estreptocócicas/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia
3.
Pathogens ; 8(1)2019 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-30884861

RESUMO

Mycoplasma hyorhinis and M. flocculare are commonly co-isolated with M. hyopneumoniae (primary agent of swine enzootic pneumonia) in gross pneumonia-like lesions, but their involvement in the disease process remains unknown. T cells play an immuno-pathological role during mycoplasmal infections. Dendritic cells (DCs) are major antigen-presenting cells involved in T cell activation and differentiation. In this study, we investigated cytokine (IL-6, IL-8, IL-10, IL-12, and TNF-α) production by porcine bone-marrow-derived DCs (BM-DCs) stimulated by M. hyopneumoniae, M. hyorhinis, and/or M. flocculare. Results showed that cytokine production levels were relatively homogenous for all evaluated M. hyopneumoniae strains in contrast to M. hyorhinis and M. flocculare strains. The most noteworthy inter-species differences were the overall (i) lower IL-12 production capacity of M. hyopneumoniae, and (ii) higher TNF-α production capacity of M. flocculare. Co-stimulation of BM-DCs showed that M. hyorhinis dominated the IL-12 production independently of its association with M. hyopneumoniae or M. flocculare. In addition, a decreased BM-DC production of TNF-α was generally observed in the presence of mycoplasma associations. Lastly, M. flocculare association with M. hyopneumoniae increased BM-DC ability to secrete IL-10. A higher cytotoxicity level in BM-DCs stimulated by M. hyorhinis was also observed. Overall, this study demonstrated that the combination of M. hyorhinis or M. flocculare with M. hyopneumoniae may participate to the modulation of the immune response that might affect the final disease outcome.

4.
Pathogens ; 6(1)2017 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-28327531

RESUMO

An in vitro porcine bone marrow-derived dendritic cell (DC) culture was developed as a model for evaluating immune polarization induced by adjuvants when administered with immunogens that may become vaccine candidates if appropriately formulated. The swine pathogen Streptococcus suis was chosen as a prototype to evaluate proposed S. suis vaccine candidates in combination with the adjuvants Poly I:C, Quil A ®, Alhydrogel ®, TiterMax Gold ® and Stimune ®. The toll-like receptor ligand Poly I:C and the saponin Quil A ® polarized swine DC cytokines towards a type 1 phenotype, with preferential production of IL-12 and TNF-α. The water-in-oil adjuvants TiterMax Gold ® and Stimune ® favoured a type 2 profile as suggested by a marked IL-6 release. In contrast, Alhydrogel ® induced a type 1/type 2 mixed cytokine profile. The antigen type differently modified the magnitude of the adjuvant effect, but overall polarization was preserved. This is the first comparative report on swine DC immune activation by different adjuvants. Although further swine immunization studies would be required to better characterize the induced responses, the herein proposed in vitro model is a promising approach that helps assessing behaviour of the vaccine formulation rapidly at the pre-screening stage and will certainly reduce numbers of animals used while advancing vaccinology science.

5.
Innate Immun ; 22(5): 353-62, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27226465

RESUMO

Actinobacillus pleuropneumoniae (APP), the etiologic agent of porcine pleuropneumonia, forms biofilms on biotic and abiotic surfaces. APP biofilms confers resistance to antibiotics. To our knowledge, no studies have examined the role of APP biofilm in immune evasion and infection persistence. This study was undertaken to (i) investigate biofilm-associated LPS modifications occurring during the switch to biofilm mode of growth; and (ii) characterize pro-inflammatory cytokines expression in porcine pulmonary alveolar macrophages (PAMs) and proliferation in porcine PBMCs challenged with planktonic or biofilm APP cells. Extracted lipid A samples from biofilm and planktonic cultures were analyzed by HPLC high-resolution, accurate mass spectrometry. Biofilm cells displayed significant changes in lipid A profiles when compared with their planktonic counterparts. Furthermore, in vitro experiments were conducted to examine the inflammatory response of PAMs exposed to UV-inactivated APP grown in biofilm or in suspension. Relative mRNA expression of pro-inflammatory genes IL1, IL6, IL8 and MCP1 decreased in PAMs when exposed to biofilm cells compared to planktonic cells. Additionally, the biofilm state reduced PBMCs proliferation. Taken together, APP biofilm cells show a weaker ability to stimulate innate immune cells, which could be due, in part, to lipid A structure modifications.


Assuntos
Infecções por Actinobacillus/imunologia , Actinobacillus pleuropneumoniae/imunologia , Biofilmes/crescimento & desenvolvimento , Leucócitos Mononucleares/imunologia , Lipídeo A/química , Macrófagos Alveolares/imunologia , Infecções por Actinobacillus/microbiologia , Actinobacillus pleuropneumoniae/crescimento & desenvolvimento , Animais , Proliferação de Células , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Citocinas/metabolismo , Resistência Microbiana a Medicamentos , Evasão da Resposta Imune , Imunidade Inata , Mediadores da Inflamação/metabolismo , Leucócitos Mononucleares/microbiologia , Lipídeo A/imunologia , Macrófagos Alveolares/microbiologia , Espectrometria de Massas , Sus scrofa
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa