Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
PLoS Biol ; 22(1): e3002468, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38271330

RESUMO

In vertebrates, olfactory receptors localize on multiple cilia elaborated on dendritic knobs of olfactory sensory neurons (OSNs). Although olfactory cilia dysfunction can cause anosmia, how their differentiation is programmed at the transcriptional level has remained largely unexplored. We discovered in zebrafish and mice that Foxj1, a forkhead domain-containing transcription factor traditionally linked with motile cilia biogenesis, is expressed in OSNs and required for olfactory epithelium (OE) formation. In keeping with the immotile nature of olfactory cilia, we observed that ciliary motility genes are repressed in zebrafish, mouse, and human OSNs. Strikingly, we also found that besides ciliogenesis, Foxj1 controls the differentiation of the OSNs themselves by regulating their cell type-specific gene expression, such as that of olfactory marker protein (omp) involved in odor-evoked signal transduction. In line with this, response to bile acids, odors detected by OMP-positive OSNs, was significantly diminished in foxj1 mutant zebrafish. Taken together, our findings establish how the canonical Foxj1-mediated motile ciliogenic transcriptional program has been repurposed for the biogenesis of immotile olfactory cilia, as well as for the development of the OSNs.


Assuntos
Neurônios Receptores Olfatórios , Peixe-Zebra , Animais , Humanos , Camundongos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Cílios/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Mucosa Olfatória
2.
Development ; 150(2)2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36661357

RESUMO

Olfactory sensory neurons (OSNs) form embryonically and mature perinatally, innervating glomeruli and extending dendrites with multiple cilia. This process and its timing are crucial for odor detection and perception and continues throughout life. In the olfactory epithelium (OE), differentiated OSNs proceed from an immature (iOSN) to a mature (mOSN) state through well-defined sequential morphological and molecular transitions, but the precise mechanisms controlling OSN maturation remain largely unknown. We have identified that a GTPase, ARL13B, has a transient and maturation state-dependent expression in OSNs marking the emergence of a primary cilium. Utilizing an iOSN-specific Arl13b-null murine model, we examined the role of ARL13B in the maturation of OSNs. The loss of Arl13b in iOSNs caused a profound dysregulation of the cellular homeostasis and development of the OE. Importantly, Arl13b null OSNs demonstrated a delay in the timing of their maturation. Finally, the loss of Arl13b resulted in severe deformation in the structure and innervation of glomeruli. Our findings demonstrate a previously unknown role of ARL13B in the maturation of OSNs and development of the OE.


Assuntos
Fatores de Ribosilação do ADP , GTP Fosfo-Hidrolases , Neurônios Receptores Olfatórios , Animais , Camundongos , Cílios , Neurogênese , Mucosa Olfatória , Fatores de Ribosilação do ADP/genética
3.
J Cell Sci ; 135(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33771931

RESUMO

The lipid composition of the primary cilia membrane is emerging as a critical regulator of cilia formation, maintenance and function. Here, we show that conditional deletion of the phosphoinositide 5'-phosphatase gene Inpp5e, mutation of which is causative of Joubert syndrome, in terminally developed mouse olfactory sensory neurons (OSNs), leads to a dramatic remodeling of ciliary phospholipids that is accompanied by marked elongation of cilia. Phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2], which is normally restricted to the proximal segment redistributed to the entire length of cilia in Inpp5e knockout mice with a reduction in phosphatidylinositol (3,4)-bisphosphate [PI(3,4)P2] and elevation of phosphatidylinositol (3,4,5)-trisphosphate [PI(3,4,5)P3] in the dendritic knob. The redistribution of phosphoinositides impaired odor adaptation, resulting in less efficient recovery and altered inactivation kinetics of the odor-evoked electrical response and the odor-induced elevation of cytoplasmic Ca2+. Gene replacement of Inpp5e through adenoviral expression restored the ciliary localization of PI(4,5)P2 and odor response kinetics in OSNs. Our findings support the role of phosphoinositides as a modulator of the odor response and in ciliary biology of native multi-ciliated OSNs.


Assuntos
Neurônios Receptores Olfatórios , Animais , Cílios , Camundongos , Odorantes , Fosfolipídeos , Monoéster Fosfórico Hidrolases/genética
4.
FASEB J ; 35(9): e21766, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34383976

RESUMO

Bardet-Biedl syndrome (BBS) is a hereditary genetic disorder that results in numerous clinical manifestations including olfactory dysfunction. Of at least 21 BBS-related genes that can carry multiple mutations, a pathogenic mutation, BBS1M390R, is the single most common mutation of clinically diagnosed BBS outcomes. While the deletion of BBS-related genes in mice can cause variable penetrance in different organ systems, the impact of the Bbs1M390R mutation in the olfactory system remains unclear. Using a clinically relevant knock-in mouse model homozygous for Bbs1M390R, we investigated the impact of the mutation on the olfactory system and tested the potential of viral-mediated, wildtype gene replacement therapy to rescue smell loss. The cilia of olfactory sensory neurons (OSNs) in Bbs1M390R/M390R mice were significantly shorter and fewer than those of wild-type mice. Also, both peripheral cellular odor detection and synaptic-dependent activity in the olfactory bulb were significantly decreased in the mutant mice. Furthermore, to gain insight into the degree to which perceptual features are impaired in the mutant mice, we used whole-body plethysmography to quantitatively measure odor-evoked sniffing. The Bbs1M390R/M390R mice showed significantly higher odor detection thresholds (reduced odor sensitivity) compared to wild-type mice; however, their odor discrimination acuity was still well maintained. Importantly, adenoviral expression of Bbs1 in OSNs restored cilia length and re-established both peripheral odorant detection and odor perception. Together, our findings further expand our understanding for the development of gene therapeutic treatment for congenital ciliopathies in the olfactory system.


Assuntos
Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/terapia , Ciliopatias/genética , Ciliopatias/terapia , Percepção Olfatória/genética , Animais , Cílios/genética , Modelos Animais de Doenças , Feminino , Terapia Genética/métodos , Masculino , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Mutação/genética , Bulbo Olfatório/patologia , Células Receptoras Sensoriais/patologia , Olfato/genética
5.
Mol Cell Neurosci ; 110: 103585, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33358996

RESUMO

Olfactory GPCRs (ORs) in mammalian olfactory receptor neurons (ORNs) mediate excitation through the Gαs family member Gαolf. Here we tentatively associate a second G protein, Gαo, with inhibitory signaling in mammalian olfactory transduction by first showing that odor evoked phosphoinositide 3-kinase (PI3K)-dependent inhibition of signal transduction is absent in the native ORNs of mice carrying a conditional OMP-Cre based knockout of Gαo. We then identify an OR from native rat ORNs that are activated by octanol through cyclic nucleotide signaling and inhibited by citral in a PI3K-dependent manner. We show that the OR activates cyclic nucleotide signaling and PI3K signaling in a manner that reflects its functionality in native ORNs. Our findings lay the groundwork to explore the interesting possibility that ORs can interact with two different G proteins in a functionally identified, ligand-dependent manner to mediate opponent signaling in mature mammalian ORNs.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Animais , Células Cultivadas , Feminino , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
6.
J Cell Sci ; 132(5)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30665891

RESUMO

Bardet-Beidl syndrome (BBS) manifests from genetic mutations encoding for one or more BBS proteins. BBS4 loss impacts olfactory ciliation and odor detection, yet the cellular mechanisms remain unclear. Here, we report that Bbs4-/- mice exhibit shorter and fewer olfactory sensory neuron (OSN) cilia despite retaining odorant receptor localization. Within Bbs4-/- OSN cilia, we observed asynchronous rates of IFT-A/B particle movements, indicating miscoordination in IFT complex trafficking. Within the OSN dendritic knob, the basal bodies are dynamic, with incorporation of ectopically expressed centrin-2 and γ-tubulin occurring after nascent ciliogenesis. Importantly, BBS4 loss results in the reduction of basal body numbers separate from cilia loss. Adenoviral expression of BBS4 restored OSN cilia lengths and was sufficient to re-establish odor detection, but failed to rescue ciliary and basal body numbers. Our results yield a model for the plurality of BBS4 functions in OSNs that includes intraciliary and periciliary roles that can explain the loss of cilia and penetrance of ciliopathy phenotypes in olfactory neurons.


Assuntos
Síndrome de Bardet-Biedl/metabolismo , Cílios/fisiologia , Flagelos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios Receptores Olfatórios/fisiologia , Animais , Corpos Basais/patologia , Células Cultivadas , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Fenótipo , Transporte Proteico , Olfato , Combinação Trimetoprima e Sulfametoxazol/metabolismo , Tubulina (Proteína)/metabolismo
7.
Chem Senses ; 462021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33690843

RESUMO

Olfactory dysfunction is a common disorder in the general population. There are multiple causes, one of which being ciliopathies, an emerging class of human hereditary genetic disorders characterized by multiple symptoms due to defects in ciliary biogenesis, maintenance, and/or function. Mutations/deletions in a wide spectrum of ciliary genes have been identified to cause ciliopathies. Currently, besides symptomatic therapy, there is no available therapeutic treatment option for olfactory dysfunction caused by ciliopathies. Multiple studies have demonstrated that targeted gene replacement can restore the morphology and function of olfactory cilia in olfactory sensory neurons and further re-establish the odor-guided behaviors in animals. Therefore, targeted gene replacement could be potentially used to treat olfactory dysfunction in ciliopathies. However, due to the potential limitations of single-gene therapy for polygenic mutation-induced diseases, alternative therapeutic targets for broader curative measures need to be developed for olfactory dysfunction, and also for other symptoms in ciliopathies. Here we review the current understanding of ciliogenesis and maintenance of olfactory cilia. Furthermore, we emphasize signaling mechanisms that may be involved in the regulation of olfactory ciliary length and highlight potential alternative therapeutic targets for the treatment of ciliopathy-induced dysfunction in the olfactory system and even in other ciliated organ systems.


Assuntos
Ciliopatias/genética , Ciliopatias/terapia , Terapia Genética , Transtornos do Olfato/genética , Transtornos do Olfato/terapia , Animais , Ciliopatias/metabolismo , Humanos , Transtornos do Olfato/metabolismo
8.
Chem Senses ; 45(9): 805-822, 2020 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-33075817

RESUMO

Olfactory sensory neurons (OSNs) are bipolar neurons, unusual because they turn over continuously and have a multiciliated dendrite. The extensive changes in gene expression accompanying OSN differentiation in mice are largely known, especially the transcriptional regulators responsible for altering gene expression, revealing much about how differentiation proceeds. Basal progenitor cells of the olfactory epithelium transition into nascent OSNs marked by Cxcr4 expression and the initial extension of basal and apical neurites. Nascent OSNs become immature OSNs within 24-48 h. Immature OSN differentiation requires about a week and at least 2 stages. Early-stage immature OSNs initiate expression of genes encoding key transcriptional regulators and structural proteins necessary for further neuritogenesis. Late-stage immature OSNs begin expressing genes encoding proteins important for energy production and neuronal homeostasis that carry over into mature OSNs. The transition to maturity depends on massive expression of one allele of one odorant receptor gene, and this results in expression of the last 8% of genes expressed by mature OSNs. Many of these genes encode proteins necessary for mature function of axons and synapses or for completing the elaboration of non-motile cilia, which began extending from the newly formed dendritic knobs of immature OSNs. The cilia from adjoining OSNs form a meshwork in the olfactory mucus and are the site of olfactory transduction. Immature OSNs also have a primary cilium, but its role is unknown, unlike the critical role in proliferation and differentiation played by the primary cilium of the olfactory epithelium's horizontal basal cell.


Assuntos
Cílios/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Animais , Axônios/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Neurogênese/genética , Mucosa Olfatória/citologia , Mucosa Olfatória/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Olfato , Sinapses/metabolismo
9.
Chem Senses ; 45(7): 493-502, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32556127

RESUMO

The chemical senses of taste and smell play a vital role in conveying information about ourselves and our environment. Tastes and smells can warn against danger and also contribute to the daily enjoyment of food, friends and family, and our surroundings. Over 12% of the US population is estimated to experience taste and smell (chemosensory) dysfunction. Yet, despite this high prevalence, long-term, effective treatments for these disorders have been largely elusive. Clinical successes in other sensory systems, including hearing and vision, have led to new hope for developments in the treatment of chemosensory disorders. To accelerate cures, we convened the "Identifying Treatments for Taste and Smell Disorders" conference, bringing together basic and translational sensory scientists, health care professionals, and patients to identify gaps in our current understanding of chemosensory dysfunction and next steps in a broad-based research strategy. Their suggestions for high-yield next steps were focused in 3 areas: increasing awareness and research capacity (e.g., patient advocacy), developing and enhancing clinical measures of taste and smell, and supporting new avenues of research into cellular and therapeutic approaches (e.g., developing human chemosensory cell lines, stem cells, and gene therapy approaches). These long-term strategies led to specific suggestions for immediate research priorities that focus on expanding our understanding of specific responses of chemosensory cells and developing valuable assays to identify and document cell development, regeneration, and function. Addressing these high-priority areas should accelerate the development of novel and effective treatments for taste and smell disorders.


Assuntos
Transtornos do Olfato/terapia , Distúrbios do Paladar/terapia , Congressos como Assunto , Terapia Genética , Humanos , Transtornos do Olfato/patologia , Medicina Regenerativa , Bibliotecas de Moléculas Pequenas/uso terapêutico , Transplante de Células-Tronco , Células-Tronco/citologia , Células-Tronco/metabolismo , Distúrbios do Paladar/patologia
10.
FASEB J ; 33(1): 1440-1455, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30133325

RESUMO

The transition zone (TZ) is a domain at the base of the cilium that is involved in maintaining ciliary compartment-specific sensory and signaling activity by regulating cilia protein composition. Mutations in TZ proteins result in cilia dysfunction, often causing pleiotropic effects observed in a group of human diseases classified as ciliopathies. The purpose of this study is to describe the importance of the TZ component Meckel-Grüber syndrome 6 ( Mks6) in several organ systems and tissues regarding ciliogenesis and cilia maintenance using congenital and conditional mutant mouse models. Similar to MKS, congenital loss of Mks6 is embryonic lethal, displaying cilia loss and altered cytoskeletal microtubule modifications but only in specific cell types. Conditional Mks6 mutants have a variable cystic kidney phenotype along with severe retinal degeneration with mislocalization of phototransduction cascade proteins. However, other phenotypes, such as anosmia and obesity, which are typically associated with cilia and TZ dysfunction, were not evident. These data indicate that despite Mks6 being a core TZ component, it has tissue- or cell type-specific functions important for cilia formation and cilia sensory and signaling activities. Lewis, W. R., Bales, K. L., Revell, D. Z., Croyle, M. J., Engle, S. E., Song, C. J., Malarkey, E. B., Uytingco, C. R., Shan, D., Antonellis, P. J., Nagy, T. R., Kesterson, R. A., Mrug, M. M., Martens, J. R., Berbari, N. F., Gross, A. K., Yoder, B. K. Mks6 mutations reveal tissue- and cell type-specific roles for the cilia transition zone.


Assuntos
Cílios/metabolismo , Proteínas do Citoesqueleto/genética , Mutação , Acetilação , Animais , Transtornos da Motilidade Ciliar/genética , Citoplasma/metabolismo , Encefalocele/genética , Feminino , Genes Letais , Doenças Renais Císticas/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Transtornos do Olfato/genética , Fenótipo , Doenças Renais Policísticas/genética , Degeneração Retiniana/genética , Retinose Pigmentar/genética , Tubulina (Proteína)/metabolismo , Aumento de Peso/genética
11.
J Neurosci ; 38(34): 7462-7475, 2018 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-30061191

RESUMO

Cilia of olfactory sensory neurons (OSNs) are the primary site of odor binding; hence, their loss results in anosmia, a clinical manifestation of pleiotropic ciliopathies for which there are no curative therapies. We used OSN-specific Ift88 knock-out mice (Ift88osnKO) of both sexes to examine the mechanisms of ciliopathy-induced olfactory dysfunction and the potential for gene replacement to rescue odorant detection, restore olfactory circuitry, and restore odor-guided behaviors. Loss of OSN cilia in Ift88osnKO mice resulted in substantially reduced odor detection and odor-driven synaptic activity in the olfactory bulb (OB). Defects in OSN axon targeting to the OB were also observed in parallel with aberrant odor-guided behavior. Intranasal gene delivery of wild-type IFT88 to Ift88osnKO mice rescued OSN ciliation and peripheral olfactory function. Importantly, this recovery of sensory input in a limited number of mature OSNs was sufficient to restore axonal targeting in the OB of juvenile mice, and with delayed onset in adult mice. In addition, restoration of sensory input re-established course odor-guided behaviors. These findings highlight the spare capacity of the olfactory epithelium and the plasticity of primary synaptic input into the central olfactory system. The restoration of peripheral and central neuronal function supports the potential for treatment of ciliopathy-related anosmia using gene therapy.SIGNIFICANCE STATEMENT Ciliopathies, for which there are no curative therapies, are genetic disorders that alter cilia morphology and/or function in numerous tissue types, including the olfactory system, leading to sensory dysfunction. We show that in vivo intranasal gene delivery restores peripheral olfactory function in a ciliopathy mouse model, including axonal targeting in the juvenile and adult olfactory bulb. Gene therapy also demonstrated restoration of olfactory perception by rescuing odor-guided behaviors. Understanding the therapeutic window and viability for gene therapy to restore odor detection and perception may facilitate translation of therapies to ciliopathy patients with olfactory dysfunctions.


Assuntos
Ciliopatias/terapia , Terapia Genética , Transtornos do Olfato/terapia , Neurônios Receptores Olfatórios/fisiologia , Proteínas Supressoras de Tumor/uso terapêutico , Adenoviridae , Administração Intranasal , Fatores Etários , Animais , Axônios/fisiologia , Axônios/ultraestrutura , Cílios/ultraestrutura , Feminino , Genes Reporter , Vetores Genéticos/administração & dosagem , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Mutantes Neurológicos , Odorantes , Bulbo Olfatório/fisiopatologia , Mucosa Olfatória/patologia , Percepção Olfatória/fisiologia , Neurônios Receptores Olfatórios/ultraestrutura , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/fisiologia
12.
Chem Senses ; 44(8): 583-592, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31420672

RESUMO

Published evidence suggests that inherent rhythmically active or "bursting" primary olfactory receptor neurons (bORNs) in crustaceans have the previously undescribed functional property of encoding olfactory information by having their rhythmicity entrained by the odor stimulus. In order to determine whether such bORN-based encoding is a fundamental feature of olfaction that extends beyond crustaceans, we patch-clamped bORN-like ORNs in mice, characterized their dynamic properties, and show they align with the dynamic properties of lobster bORNs. We then characterized bORN-like activity by imaging the olfactory epithelium of OMP-GCaMP6f mice. Next, we showed rhythmic activity is not dependent upon the endogenous OR by patching ORNs in OR/GFP mice. Lastly, we showed the properties of bORN-like ORNs characterized in mice generalize to rats. Our findings suggest encoding odor time should be viewed as a fundamental feature of olfaction with the potential to be used to navigate odor plumes in animals as diverse as crustaceans and mammals.


Assuntos
Cálcio/fisiologia , Potenciais Somatossensoriais Evocados/fisiologia , Odorantes/análise , Neurônios Receptores Olfatórios/fisiologia , Olfato/fisiologia , Animais , Cálcio/análise , Potenciais Somatossensoriais Evocados/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Imagem Molecular , Nephropidae , Mucosa Olfatória/citologia , Mucosa Olfatória/fisiologia , Neurônios Receptores Olfatórios/citologia , Técnicas de Patch-Clamp , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley
13.
Mol Ther ; 25(4): 904-916, 2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28237838

RESUMO

Olfactory dysfunction is a pervasive but underappreciated health concern that affects personal safety and quality of life. Patients with olfactory dysfunctions have limited therapeutic options, particularly those involving congenital diseases. Bardet-Biedl syndrome (BBS) is one such disorder, where olfactory loss and other symptoms manifest from defective cilium morphology and/or function in various cell types/tissues. Olfactory sensory neurons (OSNs) of BBS mutant mice lack the capacity to build/maintain cilia, rendering the cells incapable of odor detection. Here we examined OSN cilium defects in Bbs1 mutant mice and assessed the utility of gene therapy to restore ciliation and function in young and adult mice. Bbs1 mutant mice possessed short residual OSN cilia in which BBSome protein trafficking and odorant detection were defective. Gene therapy with an adenovirus-delivered wild-type Bbs1 gene restored OSN ciliation, corrected BBSome cilium trafficking defects, and returned acute odor responses. Finally, using clinically approved AAV serotypes, we demonstrate, for the first time, the capacity of AAVs to restore ciliation and odor detection in OSNs of Bbs1 mutants. Together, our data demonstrate that OSN ciliogenesis can be promoted in differentiated cells of young and adult Bbs1 mutants and highlight the potential of gene therapy as a viable restorative treatment for congenital olfactory disorders.


Assuntos
Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/fisiopatologia , Terapia Genética , Neurônios Receptores Olfatórios/metabolismo , Alelos , Animais , Síndrome de Bardet-Biedl/terapia , Cílios/metabolismo , Cílios/patologia , Dependovirus/genética , Modelos Animais de Doenças , Expressão Ectópica do Gene , Expressão Gênica , Técnicas de Transferência de Genes , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Humanos , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação , Percepção Olfatória/genética , Fenótipo , Transporte Proteico , Transdução Genética
14.
J Cell Sci ; 128(10): 1934-45, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25908845

RESUMO

Cilia are evolutionarily conserved organelles found on many mammalian cell types, including neuronal populations. Although neuronal cilia, including those on olfactory sensory neurons (OSNs), are often delineated by localization of adenylyl cyclase 3 (AC3, also known as ADCY3), the mechanisms responsible for targeting integral membrane proteins are largely unknown. Post-translational modification by small ubiquitin-like modifier (SUMO) proteins plays an important role in protein localization processes such as nuclear-cytosolic transport. Here, we identified through bioinformatic analysis that adenylyl cyclases harbor conserved SUMOylation motifs, and show that AC3 is a substrate for SUMO modification. Functionally, overexpression of the SUMO protease SENP2 prevented ciliary localization of AC3, without affecting ciliation or cilia maintenance. Furthermore, AC3-SUMO mutants did not localize to cilia. To test whether SUMOylation is sufficient for cilia entry, we compared localization of ANO2, which possesses a SUMO motif, and ANO1, which lacks SUMOylation sites and does not localize to cilia. Introduction of SUMOylation sites into ANO1 was not sufficient for ciliary entry. These data suggest that SUMOylation is necessary but not sufficient for ciliary trafficking of select constituents, further establishing the link between ciliary and nuclear import.


Assuntos
Cílios/metabolismo , Receptores Odorantes/metabolismo , Adenilil Ciclases/química , Adenilil Ciclases/metabolismo , Sequência de Aminoácidos , Animais , Cães , Células HEK293 , Humanos , Células Madin Darby de Rim Canino , Dados de Sequência Molecular , Transporte Proteico , Transdução de Sinais , Sumoilação
15.
J Neurosci ; 35(40): 13761-72, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26446227

RESUMO

The olfactory epithelium (OE) is one of the few tissues to undergo constitutive neurogenesis throughout the mammalian lifespan. It is composed of multiple cell types including olfactory sensory neurons (OSNs) that are readily replaced by two populations of basal stem cells, frequently dividing globose basal cells and quiescent horizontal basal cells (HBCs). However, the precise mechanisms by which these cells mediate OE regeneration are unclear. Here, we show for the first time that the HBC subpopulation of basal stem cells uniquely possesses primary cilia that are aligned in an apical orientation in direct apposition to sustentacular cell end feet. The positioning of these cilia suggests that they function in the detection of growth signals and/or differentiation cues. To test this idea, we generated an inducible, cell type-specific Ift88 knock-out mouse line (K5rtTA;tetOCre;Ift88(fl/fl)) to disrupt cilia formation and maintenance specifically in HBCs. Surprisingly, the loss of HBC cilia did not affect the maintenance of the adult OE but dramatically impaired the regeneration of OSNs following lesion. Furthermore, the loss of cilia during development resulted in a region-specific decrease in neurogenesis, implicating HBCs in the establishment of the OE. Together, these results suggest a novel role for primary cilia in HBC activation, proliferation, and differentiation. SIGNIFICANCE STATEMENT: We show for the first time the presence of primary cilia on a quiescent population of basal stem cells, the horizontal basal cells (HBCs), in the olfactory epithelium (OE). Importantly, our data demonstrate that cilia on HBCs are necessary for regeneration of the OE following injury. Moreover, the disruption of HBC cilia alters neurogenesis during the development of the OE, providing evidence that HBCs participate in the establishment of this tissue. These data suggest that the mechanisms of penetrance for ciliopathies in the OE extend beyond that of defects in olfactory sensory neurons and may include alterations in OE maintenance and regeneration.


Assuntos
Cílios/genética , Mucosa Olfatória/lesões , Regeneração/genética , Fatores de Ribosilação do ADP/genética , Animais , Animais Recém-Nascidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Doxiciclina/administração & dosagem , Embrião de Mamíferos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Histona Desmetilases/metabolismo , Melfalan/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Proteína de Marcador Olfatório/metabolismo , Mucosa Olfatória/citologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , gama-Globulinas/metabolismo
16.
Circ Res ; 114(6): 982-92, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24508725

RESUMO

RATIONALE: Kv1.5 (KCNA5) mediates the ultra-rapid delayed rectifier current that controls atrial action potential duration. Given its atrial-specific expression and alterations in human atrial fibrillation, Kv1.5 has emerged as a promising target for the treatment of atrial fibrillation. A necessary step in the development of novel agents that selectively modulate trafficking pathways is the identification of the cellular machinery controlling Kv1.5 surface density, of which little is yet known. OBJECTIVE: To investigate the role of the unconventional myosin-V (MYO5A and MYO5B) motors in determining the cell surface density of Kv1.5. METHODS AND RESULTS: Western blot analysis showed MYO5A and MYO5B expression in the heart, whereas disruption of endogenous motors selectively reduced IKur current in adult rat cardiomyocytes. Dominant negative constructs and short hairpin RNA silencing demonstrated a role for MYO5A and MYO5B in the surface trafficking of Kv1.5 and connexin-43 but not potassium voltage-gated channel, subfamily H (eag-related), member 2 (KCNH2). Live-cell imaging of Kv1.5-GFP and retrospective labeling of phalloidin demonstrated motility of Kv1.5 vesicles on actin tracts. MYO5A participated in anterograde trafficking, whereas MYO5B regulated postendocytic recycling. Overexpression of mutant motors revealed a selective role for Rab11 in coupling MYO5B to Kv1.5 recycling. CONCLUSIONS: MYO5A and MYO5B control functionally distinct steps in the surface trafficking of Kv1.5. These isoform-specific trafficking pathways determine Kv1.5-encoded IKur in myocytes to regulate repolarizing current and, consequently, cardiac excitability. Therapeutic strategies that manipulate Kv1.5 selective trafficking pathways may prove useful in the treatment of arrhythmias.


Assuntos
Membrana Celular/metabolismo , Canal de Potássio Kv1.5/metabolismo , Miócitos Cardíacos/metabolismo , Cadeias Pesadas de Miosina/fisiologia , Miosina Tipo V/fisiologia , Miosinas/fisiologia , Transporte Proteico/fisiologia , Citoesqueleto de Actina/fisiologia , Animais , Arritmias Cardíacas/fisiopatologia , Linhagem Celular , Conexina 43/análise , Canal de Potássio ERG1 , Endocitose , Canais de Potássio Éter-A-Go-Go/análise , Junções Comunicantes , Genes Reporter , Sistema de Condução Cardíaco/fisiopatologia , Transporte de Íons , Canal de Potássio Kv1.5/genética , Masculino , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Cardiovasculares , Cadeias Pesadas de Miosina/deficiência , Cadeias Pesadas de Miosina/genética , Miosina Tipo V/deficiência , Miosina Tipo V/genética , Miosinas/deficiência , Miosinas/genética , Potássio/metabolismo , Isoformas de Proteínas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes de Fusão/metabolismo , Proteínas rab de Ligação ao GTP/fisiologia
17.
Proc Natl Acad Sci U S A ; 109(31): E2134-43, 2012 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-22509027

RESUMO

The cardiac electrical impulse depends on an orchestrated interplay of transmembrane ionic currents in myocardial cells. Two critical ionic current mechanisms are the inwardly rectifying potassium current (I(K1)), which is important for maintenance of the cell resting membrane potential, and the sodium current (I(Na)), which provides a rapid depolarizing current during the upstroke of the action potential. By controlling the resting membrane potential, I(K1) modifies sodium channel availability and therefore, cell excitability, action potential duration, and velocity of impulse propagation. Additionally, I(K1)-I(Na) interactions are key determinants of electrical rotor frequency responsible for abnormal, often lethal, cardiac reentrant activity. Here, we have used a multidisciplinary approach based on molecular and biochemical techniques, acute gene transfer or silencing, and electrophysiology to show that I(K1)-I(Na) interactions involve a reciprocal modulation of expression of their respective channel proteins (Kir2.1 and Na(V)1.5) within a macromolecular complex. Thus, an increase in functional expression of one channel reciprocally modulates the other to enhance cardiac excitability. The modulation is model-independent; it is demonstrable in myocytes isolated from mouse and rat hearts and with transgenic and adenoviral-mediated overexpression/silencing. We also show that the post synaptic density, discs large, and zonula occludens-1 (PDZ) domain protein SAP97 is a component of this macromolecular complex. We show that the interplay between Na(v)1.5 and Kir2.1 has electrophysiological consequences on the myocardium and that SAP97 may affect the integrity of this complex or the nature of Na(v)1.5-Kir2.1 interactions. The reciprocal modulation between Na(v)1.5 and Kir2.1 and the respective ionic currents should be important in the ability of the heart to undergo self-sustaining cardiac rhythm disturbances.


Assuntos
Potenciais de Ação , Arritmias Cardíacas/mortalidade , Regulação da Expressão Gênica , Potenciais da Membrana , Proteínas Musculares/biossíntese , Miócitos Cardíacos/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/biossíntese , Canais de Sódio/biossíntese , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatologia , Proteína 1 Homóloga a Discs-Large , Inativação Gênica , Guanilato Quinases/genética , Guanilato Quinases/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Musculares/genética , Miócitos Cardíacos/patologia , Canal de Sódio Disparado por Voltagem NAV1.5 , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Canais de Sódio/genética , Proteína da Zônula de Oclusão-1
18.
Circ Res ; 111(7): 842-53, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22843785

RESUMO

RATIONALE: Kv1.5 (KCNA5) is expressed in the heart, where it underlies the I(Kur) current that controls atrial repolarization, and in the pulmonary vasculature, where it regulates vessel contractility in response to changes in oxygen tension. Atrial fibrillation and hypoxic pulmonary hypertension are characterized by downregulation of Kv1.5 protein expression, as well as with oxidative stress. Formation of sulfenic acid on cysteine residues of proteins is an important, dynamic mechanism for protein regulation under oxidative stress. Kv1.5 is widely reported to be redox-sensitive, and the channel possesses 6 potentially redox-sensitive intracellular cysteines. We therefore hypothesized that sulfenic acid modification of the channel itself may regulate Kv1.5 in response to oxidative stress. OBJECTIVE: To investigate how oxidative stress, via redox-sensitive modification of the channel with sulfenic acid, regulates trafficking and expression of Kv1.5. METHODS AND RESULTS: Labeling studies with the sulfenic acid-specific probe DAz and horseradish peroxidase-streptavidin Western blotting demonstrated a global increase in sulfenic acid-modified proteins in human patients with atrial fibrillation, as well as sulfenic acid modification to Kv1.5 in the heart. Further studies showed that Kv1.5 is modified with sulfenic acid on a single COOH-terminal cysteine (C581), and the level of sulfenic acid increases in response to oxidant exposure. Using live-cell immunofluorescence and whole-cell voltage-clamping, we found that modification of this cysteine is necessary and sufficient to reduce channel surface expression, promote its internalization, and block channel recycling back to the cell surface. Moreover, Western blotting demonstrated that sulfenic acid modification is a trigger for channel degradation under prolonged oxidative stress. CONCLUSIONS: Sulfenic acid modification to proteins, which is elevated in diseased human heart, regulates Kv1.5 channel surface expression and stability under oxidative stress and diverts channel from a recycling pathway to degradation. This provides a molecular mechanism linking oxidative stress and downregulation of channel expression observed in cardiovascular diseases.


Assuntos
Fibrilação Atrial/metabolismo , Canal de Potássio Kv1.5/química , Canal de Potássio Kv1.5/metabolismo , Miocárdio/metabolismo , Ácidos Sulfênicos/metabolismo , Sequência de Aminoácidos , Animais , Fibrilação Atrial/patologia , Estudos de Casos e Controles , Linhagem Celular , Células Cultivadas , Humanos , Camundongos , Modelos Animais , Dados de Sequência Molecular , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Oxirredução , Estresse Oxidativo/fisiologia , Ratos , Espécies Reativas de Oxigênio , Transdução de Sinais/fisiologia
19.
Methods Mol Biol ; 2710: 1-18, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37688720

RESUMO

Olfactory cilia are the obligate transducers of the odorant signal, and thus their study has been a focus of investigation in the olfactory field. Various methodologies have been established to visualize the cilia of olfactory sensory neurons; however, these approaches are limited to static imaging and often lack the ability to resolve individual cilia projecting from solitary neurons in the postnatal mouse. Here we detail a procedure of the visualization of olfactory cilia by ectopic expression of fluorescently tagged proteins. The procedure can be used for the observation and manipulation of the olfactory cilia and ciliary proteins in both static and dynamic conditions.


Assuntos
Cílios , Neurônios Receptores Olfatórios , Animais , Camundongos , Olfato , Odorantes , Imagem de Difusão por Ressonância Magnética
20.
J Neurosci ; 31(37): 13224-35, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21917805

RESUMO

Voltage-gated potassium (Kv) channels are critical for neuronal excitability and are targeted to specific subcellular compartments to carry out their unique functions. While it is widely believed that Kv channels exist as heteromeric complexes in neurons, direct tests of the hypothesis that specific heteromeric channel populations display divergent spatial and temporal dynamics are limited. Using a bimolecular fluorescence complementation approach, we monitored the assembly and localization of cell surface channel complexes in living cells. While PSD95-mediated clustering was subunit independent, selective visualization of heteromeric Kv complexes in rat hippocampal neurons revealed subunit-dependent localization that was not predicted by analyzing individual subunits. Assembly of Kv1.1 with Kv1.4 prevented axonal localization but not surface expression, while inclusion of Kv1.2 imparted clustering at presynaptic sites and decreased channel mobility within the axon. This mechanism by which specific Kv channel subunits can act in a dominant manner to impose unique trafficking properties to heteromeric complexes extended to Shab-related family of Kv channels. When coexpressed, Kv2.1 and Kv2.2 heteromultimers did not aggregate in somatodendritic clusters observed with expression of Kv2.1 alone. These studies demonstrate selective axonal trafficking and surface localization of distinct Kv channels based on their subunit composition.


Assuntos
Transporte Axonal/fisiologia , Subunidades Proteicas/metabolismo , Transporte Proteico/fisiologia , Superfamília Shaker de Canais de Potássio/metabolismo , Animais , Células COS , Membrana Celular/metabolismo , Células Cultivadas , Chlorocebus aethiops , Feminino , Hipocampo/metabolismo , Hipocampo/fisiologia , Masculino , Potenciais da Membrana , Neurônios/metabolismo , Neurônios/fisiologia , Técnicas de Patch-Clamp/métodos , Ratos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa