Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chem Rev ; 122(7): 7097-7141, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35049287

RESUMO

Microscale surgery on single cells and small organisms has enabled major advances in fundamental biology and in engineering biological systems. Examples of applications range from wound healing and regeneration studies to the generation of hybridoma to produce monoclonal antibodies. Even today, these surgical operations are often performed manually, but they are labor intensive and lack reproducibility. Microfluidics has emerged as a powerful technology to control and manipulate cells and multicellular systems at the micro- and nanoscale with high precision. Here, we review the physical and chemical mechanisms of microscale surgery and the corresponding design principles, applications, and implementations in microfluidic systems. We consider four types of surgical operations: (1) sectioning, which splits a biological entity into multiple parts, (2) ablation, which destroys part of an entity, (3) biopsy, which extracts materials from within a living cell, and (4) fusion, which joins multiple entities into one. For each type of surgery, we summarize the motivating applications and the microfluidic devices developed. Throughout this review, we highlight existing challenges and opportunities. We hope that this review will inspire scientists and engineers to continue to explore and improve microfluidic surgical methods.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Engenharia , Dispositivos Lab-On-A-Chip , Microfluídica/métodos , Reprodutibilidade dos Testes
2.
Lab Chip ; 22(9): 1690-1701, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35438713

RESUMO

Despite their rarity in peripheral blood, basophils play important roles in allergic disorders and other diseases including sepsis and COVID-19. Existing basophil isolation methods require many manual steps and suffer from significant variability in purity and recovery. We report an integrated basophil isolation device (i-BID) in microfluidics for negative immunomagnetic selection of basophils directly from 100 µL of whole blood within 10 minutes. We use a simulation-driven pipeline to design a magnetic separation module to apply an exponentially increasing magnetic force to capture magnetically tagged non-basophils flowing through a microtubing sandwiched between magnetic flux concentrators sweeping across a Halbach array. The exponential profile captures non-basophils effectively while preventing their excessive initial buildup causing clogging. The i-BID isolates basophils with a mean purity of 93.9% ± 3.6% and recovery of 95.6% ± 3.4% without causing basophil degradation or unintentional activation. Our i-BID has the potential to enable basophil-based point-of-care diagnostics such as rapid allergy assessment.


Assuntos
COVID-19 , Hipersensibilidade , Basófilos , Humanos , Hipersensibilidade/diagnóstico , Contagem de Leucócitos , Microfluídica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa