Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biol Open ; 12(1)2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36537579

RESUMO

The mammalian superior colliculus and its non-mammalian homolog, the optic tectum (OT), are midbrain structures that integrate multimodal sensory inputs and guide non-voluntary movements in response to prevalent stimuli. Recent studies have implicated this structure as a possible site affected in autism spectrum disorder (ASD). Interestingly, fetal exposure to valproic acid (VPA) has also been associated with an increased risk of ASD in humans and animal models. Therefore, we took the approach of determining the effects of VPA treatment on zebrafish OT development as a first step in identifying the mechanisms that allow its formation. We describe normal OT development during the first 5 days of development and show that in VPA-treated embryos, neuronal specification and neuropil formation was delayed. VPA treatment was most detrimental during the first 3 days of development and did not appear to be linked to oxidative stress. In conclusion, our work provides a foundation for research into mechanisms driving OT development, as well as the relationship between the OT, VPA, and ASD. This article has an associated First Person interview with one of the co-first authors of the paper.


Assuntos
Transtorno do Espectro Autista , Ácido Valproico , Humanos , Animais , Ácido Valproico/efeitos adversos , Peixe-Zebra , Colículos Superiores , Neurogênese , Mamíferos
2.
Front Mol Neurosci ; 15: 818007, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35221915

RESUMO

The optic tectum (OT) is a multilaminated midbrain structure that acts as the primary retinorecipient in the zebrafish brain. Homologous to the mammalian superior colliculus, the OT is responsible for the reception and integration of stimuli, followed by elicitation of salient behavioral responses. While the OT has been the focus of functional experiments for decades, less is known concerning specific cell types, microcircuitry, and their individual functions within the OT. Recent efforts have contributed substantially to the knowledge of tectal cell types; however, a comprehensive cell catalog is incomplete. Here we contribute to this growing effort by applying single-cell RNA Sequencing (scRNA-seq) to characterize the transcriptomic profiles of tectal cells labeled by the transgenic enhancer trap line y304Et(cfos:Gal4;UAS:Kaede). We sequenced 13,320 cells, a 4X cellular coverage, and identified 25 putative OT cell populations. Within those cells, we identified several mature and developing neuronal populations, as well as non-neuronal cell types including oligodendrocytes and microglia. Although most mature neurons demonstrate GABAergic activity, several glutamatergic populations are present, as well as one glycinergic population. We also conducted Gene Ontology analysis to identify enriched biological processes, and computed RNA velocity to infer current and future transcriptional cell states. Finally, we conducted in situ hybridization to validate our bioinformatic analyses and spatially map select clusters. In conclusion, the larval zebrafish OT is a complex structure containing at least 25 transcriptionally distinct cell populations. To our knowledge, this is the first time scRNA-seq has been applied to explore the OT alone and in depth.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa