RESUMO
Palmitoylation, a lipid-based posttranslational protein modification, plays a crucial role in regulating various aspects of neuronal function through altering protein membrane-targeting, stabilities, and protein-protein interaction profiles. Disruption of palmitoylation has recently garnered attention as disease mechanism in neurodegeneration. Many proteins implicated in neurodegenerative diseases and associated neuronal dysfunction, including but not limited to amyloid precursor protein, ß-secretase (BACE1), postsynaptic density protein 95, Fyn, synaptotagmin-11, mutant huntingtin, and mutant superoxide dismutase 1, undergo palmitoylation, and recent evidence suggests that altered palmitoylation contributes to the pathological characteristics of these proteins and associated disruption of cellular processes. In addition, dysfunction of enzymes that catalyze palmitoylation and depalmitoylation has been connected to the development of neurological disorders. This review highlights some of the latest advances in our understanding of palmitoylation regulation in neurodegenerative diseases and explores potential therapeutic implications.
Assuntos
Lipoilação , Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/genética , Animais , Processamento de Proteína Pós-TraducionalRESUMO
Protein mislocalization is a key initial step in neurodegeneration, regardless of etiology, and has been linked to changes in the dynamic addition of saturated fatty acids to proteins, a process known as S-acylation. With the advent of new techniques to study S-acylation and the recent discovery of new enzymes that facilitate protein deacylation, novel small molecules are emerging as potential new therapeutic treatments. Huntington disease (HD) is a devastating, fatal neurodegenerative disease characterized by motor, cognitive, and psychiatric deficits caused by a CAG repeat expansion in the HTT gene. The protein that is mutated in HD, huntingtin, is less S-acylated which is associated with mutant HTT aggregation and cytotoxicity. Recent exciting findings indicate that restoring S-acylation in HD models using small molecule inhibitors of the deacylation enzymes is protective. Herein, we set out to describe the known roles of S-acylation in HD and how it can be targeted for therapeutic design.
Assuntos
Proteína Huntingtina , Doença de Huntington , Doença de Huntington/metabolismo , Doença de Huntington/tratamento farmacológico , Humanos , Acilação , Proteína Huntingtina/metabolismo , Proteína Huntingtina/genética , Animais , Ácidos Graxos/metabolismoRESUMO
Huntington disease (HD) is a neurodegenerative disorder caused by a CAG expansion in the HTT gene that codes for an elongated polyglutamine tract in the huntingtin (HTT) protein. HTT is subject to multiple post-translational modifications (PTMs) that regulate its cellular function. Mutating specific PTM sites within mutant HTT (mHTT) in HD mouse models can modulate disease phenotypes, highlighting the key role of HTT PTMs in the pathogenesis of HD. These findings have led to increased interest in developing small molecules to modulate HTT PTMs in order to decrease mHTT toxicity. However, the therapeutic efficacy of pharmacological modulation of HTT PTMs in preclinical HD models remains largely unknown. HTT is palmitoylated at cysteine 214 by the huntingtin-interacting protein 14 (HIP14 or ZDHHC17) and 14-like (HIP14L or ZDHHC13) acyltransferases. Here, we assessed if HTT palmitoylation should be regarded as a therapeutic target to treat HD by (1) investigating palmitoylation dysregulation in rodent and human HD model systems, (2) measuring the impact of mHTT-lowering therapy on brain palmitoylation, and (3) evaluating if HTT palmitoylation can be pharmacologically modulated. We show that palmitoylation of mHTT and some HIP14/HIP14L-substrates is decreased early in multiple HD mouse models, and that mHTT palmitoylation decreases further with aging. Lowering mHTT in the brain of YAC128 mice is not sufficient to rescue aberrant palmitoylation. However, we demonstrate that mHTT palmitoylation can be normalized in COS-7 cells, in YAC128 cortico-striatal primary neurons and HD patient-derived lymphoblasts using an acyl-protein thioesterase (APT) inhibitor. Moreover, we show that modulating palmitoylation reduces mHTT aggregation and mHTT-induced cytotoxicity in COS-7 cells and YAC128 neurons.
Assuntos
Proteína Huntingtina/genética , Proteína Huntingtina/toxicidade , Lipoilação/efeitos dos fármacos , Lipoilação/genética , Aciltransferases/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Cisteína/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Feminino , Humanos , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Masculino , Camundongos , Mutação , Proteínas do Tecido Nervoso/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , RatosRESUMO
Huntington disease (HD) is a progressive neurodegenerative disease that initially affects the striatum and leads to changes in behavior and loss of motor coordination. It is caused by an expansion in the polyglutamine repeat at the N terminus of huntingtin (HTT) that leads to aggregation of mutant HTT. The loss of wild-type function, in combination with the toxic gain of function mutation, initiates various cell death pathways. Wild-type and mutant HTT are regulated by different posttranslational modifications that can positively or negatively regulate their function or toxicity. In particular, we have previously shown that caspase cleavage of mutant HTT at amino acid position aspartate 586 (D586) by caspase-6 is critical for the pathogenesis of the disease in an HD mouse model. Herein, we describe the identification of a new caspase cleavage site at position D572 that is mediated by caspase-1. Inhibition of caspase-1 also appeared to decrease proteolysis at D586, likely by blocking the downstream activation of caspase-6 through caspase-1. Inhibition of caspase cleavage at D572 significantly decreased mutant HTT aggregation and significantly increased the turnover of soluble mutant HTT. This suggests that caspase-1 may be a viable target to inhibit caspase cleavage of mutant HTT at both D572 and D586 to promote mutant HTT clearance.-Martin, D. D. O., Schmidt, M. E., Nguyen, Y. T., Lazic, N., Hayden, M. R. Identification of a novel caspase cleavage site in huntingtin that regulates mutant huntingtin clearance.
Assuntos
Proteína Huntingtina/química , Proteína Huntingtina/genética , Proteínas Mutantes/química , Proteínas Mutantes/genética , Animais , Sítios de Ligação/genética , Caspase 1/metabolismo , Células HeLa , Humanos , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/metabolismo , Camundongos , Mutagênese Sítio-Dirigida , Proteínas Mutantes/metabolismo , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Proteólise , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , SolubilidadeRESUMO
Huntington disease (HD) is a debilitating neurodegenerative disease characterized by the loss of motor control and cognitive ability that ultimately leads to death. It is caused by the expansion of a polyglutamine tract in the huntingtin (HTT) protein, which leads to aggregation of the protein and eventually cellular death. Both the wild-type and mutant form of the protein are highly regulated by post-translational modifications including proteolysis, palmitoylation and phosphorylation. We now demonstrate the existence of a new post-translational modification of HTT: the addition of the 14 carbon fatty acid myristate to a glycine residue exposed on a caspase-3-cleaved fragment (post-translational myristoylation) and that myristoylation of this fragment is altered in a physiologically relevant model of mutant HTT. Myristoylated HTT553-585-EGFP, but not its non-myristoylated variant, initially localized to the ER, induced the formation of autophagosomes and accumulated in abnormally large autophagolysosomal/lysosomal structures in a variety of cell types, including neuronal cell lines under nutrient-rich conditions. Our results suggest that accumulation of myristoylated HTT553-586 in cells may alter the rate of production of autophagosomes and/or their clearance through the heterotypic autophagosomal/lysosomal fusion process. Overall, our novel observations establish a role for the post-translational myristoylation of a caspase-3-cleaved fragment of HTT, highly similar to the Barkor/ATG14L autophagosome-targeting sequence domain thought to sense, maintain and/or promote membrane curvature in the regulation of autophagy. Abnormal processing or production of this myristoylated HTT fragment might be involved in the pathophysiology of HD.
Assuntos
Caspase 3/metabolismo , Glicina/metabolismo , Ácido Mirístico/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Autofagia , Proteínas Relacionadas à Autofagia , Retículo Endoplasmático/metabolismo , Células HeLa , Humanos , Proteína Huntingtina , Lisossomos/metabolismo , Proteínas do Tecido Nervoso/química , Fagossomos/metabolismoRESUMO
HIP14 is the most highly conserved of 23 human palmitoyl acyltransferases (PATs) that catalyze the post-translational addition of palmitate to proteins, including huntingtin (HTT). HIP14 is dysfunctional in the presence of mutant HTT (mHTT), the causative gene for Huntington disease (HD), and we hypothesize that reduced palmitoylation of HTT and other HIP14 substrates contributes to the pathogenesis of the disease. Here we describe the yeast two-hybrid (Y2H) interactors of HIP14 in the first comprehensive study of interactors of a mammalian PAT. Unexpectedly, we discovered a highly significant overlap between HIP14 interactors and 370 published interactors of HTT, 4-fold greater than for control proteins (P = 8 × 10(-5)). Nearly half of the 36 shared interactors are already implicated in HD, supporting a direct link between HIP14 and the disease. The HIP14 Y2H interaction set is significantly enriched for palmitoylated proteins that are candidate substrates. We confirmed that three of them, GPM6A, and the Sprouty domain-containing proteins SPRED1 and SPRED3, are indeed palmitoylated by HIP14; the first enzyme known to palmitoylate these proteins. These novel substrates functions might be affected by reduced palmitoylation in HD. We also show that the vesicular cargo adapter optineurin, an established HTT-binding protein, co-immunoprecipitates with HIP14 but is not palmitoylated. mHTT leads to mislocalization of optineurin and aberrant cargo trafficking. Therefore, it is possible that optineurin regulates trafficking of HIP14 to its substrates. Taken together, our data raise the possibility that defective palmitoylation by HIP14 might be an important mechanism that contributes to the pathogenesis of HD.
Assuntos
Aciltransferases/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Doença de Huntington/genética , Proteínas do Tecido Nervoso/genética , Processamento de Proteína Pós-Traducional , Aciltransferases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Células COS , Proteínas de Ciclo Celular , Chlorocebus aethiops , Redes Reguladoras de Genes , Células HEK293 , Humanos , Proteína Huntingtina , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipoilação , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Anotação de Sequência Molecular , Proteínas do Tecido Nervoso/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Fator de Transcrição TFIIIA/genética , Fator de Transcrição TFIIIA/metabolismo , Técnicas do Sistema de Duplo-HíbridoRESUMO
Palmitoylation involves the reversible posttranslational addition of palmitate to cysteines and promotes membrane binding and subcellular localization. Recent advancements in the detection and identification of palmitoylated proteins have led to multiple palmitoylation proteomics studies but these datasets are contained within large supplemental tables, making downstream analysis and data mining time-consuming and difficult. Consequently, we curated the data from 15 palmitoylation proteomics studies into one compendium containing 1,838 genes encoding palmitoylated proteins; representing approximately 10% of the genome. Enrichment analysis revealed highly significant enrichments for Gene Ontology biological processes, pathway maps, and process networks related to the nervous system. Strikingly, 41% of synaptic genes encode a palmitoylated protein in the compendium. The top disease associations included cancers and diseases and disorders of the nervous system, with Schizophrenia, HD, and pancreatic ductal carcinoma among the top five, suggesting that aberrant palmitoylation may play a pivotal role in the balance of cell death and survival. This compendium provides a much-needed resource for cell biologists and the palmitoylation field, providing new perspectives for cancer and neurodegeneration.
Assuntos
Lipoilação , Neoplasias/metabolismo , Doenças do Sistema Nervoso/metabolismo , Palmitatos/análise , Proteoma/análise , Proteômica/métodos , Cisteína/química , Cisteína/metabolismo , Bases de Dados de Proteínas , Humanos , Palmitatos/química , Palmitatos/metabolismo , Proteoma/química , Proteoma/metabolismoRESUMO
Huntington Disease (HD) is a progressive neurodegenerative disease caused by an elongated CAG repeat in the huntingtin (HTT) gene that encodes a polyglutamine tract in the HTT protein. Proteolysis of the mutant HTT protein (mHTT) has been detected in human and murine HD brains and is implicated in the pathogenesis of HD. Of particular importance is the site at amino acid (aa) 586 that contains a caspase-6 (Casp6) recognition motif. Activation of Casp6 occurs presymptomatically in human HD patients and the inhibition of mHTT proteolysis at aa586 in the YAC128 mouse model results in the full rescue of HD-like phenotypes. Surprisingly, Casp6 ablation in two different HD mouse models did not completely prevent the generation of this fragment, and therapeutic benefits were limited, questioning the role of Casp6 in the disease. We have evaluated the impact of the loss of Casp6 in the YAC128 mouse model of HD. Levels of the mHTT-586 fragment are reduced but not absent in the absence of Casp6 and we identify caspase 8 as an alternate enzyme that can generate this fragment. In vivo, the ablation of Casp6 results in a partial rescue of body weight gain, normalized IGF-1 levels, a reversal of the depression-like phenotype and decreased HTT levels. In the YAC128/Casp6-/- striatum there is a concomitant reduction in p62 levels, a marker of autophagic activity, suggesting increased autophagic clearance. These results implicate the HTT-586 fragment as a key contributor to certain features of HD, irrespective of the enzyme involved in its generation.
Assuntos
Caspase 6/metabolismo , Doença de Huntington/enzimologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Animais , Peso Corporal , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Caspase 6/genética , Corpo Estriado/metabolismo , Depressão/metabolismo , Modelos Animais de Doenças , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos , Camundongos Transgênicos , Atividade MotoraRESUMO
To further its pathogenesis, S. Typhimurium delivers effector proteins into host cells, including the novel E3 ubiquitin ligase (NEL) effector SspH2. Using model systems in a cross-kingdom approach we gained further insight into the molecular function of this effector. Here, we show that SspH2 modulates innate immunity in both mammalian and plant cells. In mammalian cell culture, SspH2 significantly enhanced Nod1-mediated IL-8 secretion when transiently expressed or bacterially delivered. In addition, SspH2 also enhanced an Rx-dependent hypersensitive response in planta. In both of these nucleotide-binding leucine rich repeat receptor (NLR) model systems, SspH2-mediated phenotypes required its catalytic E3 ubiquitin ligase activity and interaction with the conserved host protein SGT1. SGT1 has an essential cell cycle function and an additional function as an NLR co-chaperone in animal and plant cells. Interaction between SspH2 and SGT1 was restricted to SGT1 proteins that have NLR co-chaperone function and accordingly, SspH2 did not affect SGT1 cell cycle functions. Mechanistic studies revealed that SspH2 interacted with, and ubiquitinated Nod1 and could induce Nod1 activity in an agonist-independent manner if catalytically active. Interestingly, SspH2 in vitro ubiquitination activity and protein stability were enhanced by SGT1. Overall, this work adds to our understanding of the sophisticated mechanisms used by bacterial effectors to co-opt host pathways by demonstrating that SspH2 can subvert immune responses by selectively exploiting the functions of a conserved host co-chaperone.
Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Imunidade Inata , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Adaptadoras de Sinalização NOD/metabolismo , Salmonella typhimurium/imunologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Ciclo Celular/química , Linhagem Celular , Deleção de Genes , Interações Hospedeiro-Patógeno , Humanos , Interleucina-8/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas Mutantes/metabolismo , Imunidade Vegetal , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Estabilidade Proteica , Proteínas Recombinantes/metabolismo , Salmonella typhimurium/metabolismo , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/metabolismo , Nicotiana/microbiologia , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Regulação para CimaRESUMO
In a little more than a decade, post-translational myristoylation (PTMyr) has become an established post-translational modification during cell death. It involves the addition of the fatty acid myristate to newly exposed N-terminal glycines following caspase cleavage. It promotes membrane binding and relocalization of functional protein domains released by caspase cleavage during apoptosis, or programmed cell death. However, as the requirement of caspase cleavage has expanded beyond just cell death, it has become apparent that PTMyr may play a role in cell survival, differentiation and now autophagy. Herein, we describe how myristoylation may play a role in autophagy with an emphasis on PTMyr.
Assuntos
Autofagia/genética , Morte Celular/genética , Ácido Mirístico/metabolismo , Processamento de Proteína Pós-Traducional/genética , Diferenciação Celular/genética , Sobrevivência Celular , Glicina/metabolismo , Humanos , Degeneração Neural/genéticaRESUMO
Myristoylation occurs cotranslationally on nascent proteins and post-translationally during apoptosis after caspase cleavages expose cryptic myristoylation sites. We demonstrate a drastic change in the myristoylated protein proteome in apoptotic cells, likely as more substrates are revealed by caspases. We show for the first time that both N-myristoyltransferases (NMTs) 1 and 2 are cleaved during apoptosis and that the caspase-3- or -8-mediated cleavage of NMT1 at Asp-72 precedes the cleavage of NMT2 by caspase-3 mainly at Asp-25. The cleavage of NMTs did not significantly affect their activity in apoptotic cells until the 8 h time point. However, the cleavage of the predominantly membrane bound NMT1 (64%) removed a polybasic domain stretch and led to a cytosolic relocalization (>55%), whereas predominantly cytosolic NMT2 (62%) relocalized to membranes when cleaved (>80%) after the removal of a negatively charged domain. The interplay between caspases and NMTs during apoptosis is of particular interest since caspases may not only control the rates of substrate production but also their myristoylation rate by regulating the location and perhaps the specificity of NMTs. Since apoptosis is often suppressed in cancer, the reduced caspase activity seen in cancer cells might also explain the higher NMT levels observed in many cancers.
Assuntos
Aciltransferases/metabolismo , Apoptose/fisiologia , Caspases/metabolismo , Ácidos Mirísticos/metabolismo , Aciltransferases/química , Aciltransferases/genética , Substituição de Aminoácidos , Animais , Células COS , Caspase 3/metabolismo , Caspase 8/genética , Caspase 8/metabolismo , Caspases/química , Chlorocebus aethiops , Células HeLa , Humanos , Células Jurkat , Células MCF-7 , Mutagênese Sítio-Dirigida , Domínios e Motivos de Interação entre Proteínas , Modificação Traducional de Proteínas , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Frações Subcelulares/metabolismo , Especificidade por SubstratoRESUMO
Huntington's disease (HD) is a devastating neurodegenerative disorder characterized by impaired motor function and cognitive decline, ultimately leading to death. HD is caused by a polyglutamine expansion in the N-terminal region of the huntingtin (HTT) protein, which is linked to decreased HTT turnover, increased HTT proteolysis, increased HTT aggregation, and subsequent neuronal death. In this review, we explore the mechanism of the protective effect of blocking HTT proteolysis at D586, which has been shown to rescue the HD phenotype in HD mouse models. Until recently, the mechanism remained unclear. Herein, we discuss how blocking HTT proteolysis at D586 promotes HTT turnover by correcting autophagy, and making HTT a better autophagy substrate, through post-translational myristoylation of HTT at G553.
Assuntos
Autofagia , Proteína Huntingtina , Doença de Huntington , Processamento de Proteína Pós-Traducional , Proteólise , Doença de Huntington/metabolismo , Proteína Huntingtina/metabolismo , Proteína Huntingtina/genética , Autofagia/fisiologia , Humanos , Animais , Ácido Mirístico/metabolismoRESUMO
Multisystem proteinopathy (MSP) is a rare, dominantly inherited disorder that includes a cluster of diseases, including frontotemporal dementia, inclusion body myopathy, and Paget's disease of bone. MSP is caused by mutations in the gene encoding valosin-containing protein (VCP). Patients with the same mutation, even within the same family, can present with a different combination of any or all of the above diseases, along with amyotrophic lateral sclerosis (ALS). The pleiotropic effects may be linked to the greater than 50 VCP co-factors that direct VCP's many roles in the cell. Small VCP-interacting protein (SVIP) is a small protein that directs VCP to autophagosomes and lysosomes. We found that SVIP directs VCP localization to lysosomes in an acylation-dependent manner. We demonstrate that SVIP is myristoylated at Glycine 2 and palmitoylated at Cysteines 4 and 7. Acylation of SVIP is required to mediate cell death in the presence of the MSP-associated VCP variant (R155H-VCP), whereas blocking SVIP myristoylation prevents cytotoxicity. Therefore, SVIP acylation may present a novel target in MSP.
RESUMO
Efficient delivery of therapeutics to the central nervous system (CNS) remains a major challenge for the treatment of neurological diseases. Huntington disease (HD) is a dominantly inherited neurodegenerative disorder caused by a CAG trinucleotide expansion mutation in the HTT gene which codes for a toxic mutant huntingtin (mHTT) protein. Pharmacological reduction of mHTT in the CNS using antisense oligonucleotides (ASO) ameliorates HD-like phenotypes in rodent models of HD, with such therapies being investigated in clinical trials for HD. In this study, we report the optimization of apolipoprotein A-I nanodisks (apoA-I NDs) as vehicles for delivery of a HTT-targeted ASO (HTT ASO) to the brain and peripheral organs for HD. We demonstrate that apoA-I wild type (WT) and the apoA-I K133C mutant incubated with a synthetic lipid, 1,2-dimyristoyl-sn-glycero-3-phosphocholine, can self-assemble into monodisperse discoidal particles with diameters <20 nm that transmigrate across an in vitro blood-brain barrier model of HD. We demonstrate that apoA-I NDs are well tolerated in vivo, and that apoA-I K133C NDs show enhanced distribution to the CNS and peripheral organs compared to apoA-I WT NDs following systemic administration. ApoA-I K133C conjugated with HTT ASO forms NDs (HTT ASO NDs) that induce significant mHTT lowering in the liver, skeletal muscle and heart as well as in the brain when delivered intravenously in the BACHD mouse model of HD. Furthermore, HTT ASO NDs increase the magnitude of mHTT lowering in the striatum and cortex compared to HTT ASO alone following intracerebroventricular administration. These findings demonstrate the potential utility of apoA-I NDs as biocompatible vehicles for enhancing delivery of mutant HTT lowering ASOs to the CNS and peripheral organs for HD.
Assuntos
Doença de Huntington , Oligonucleotídeos Antissenso , Camundongos , Animais , Oligonucleotídeos Antissenso/uso terapêutico , Apolipoproteína A-I/genética , Doença de Huntington/tratamento farmacológico , Doença de Huntington/genética , Oligonucleotídeos/uso terapêutico , Encéfalo/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Proteína Huntingtina/uso terapêutico , Modelos Animais de DoençasRESUMO
Myristoylation, the addition of a 14-carbon fatty acid to the N-terminal glycine of a protein, is key to protein-membrane and protein-protein interactions. Typically, myristoylation occurs cotranslationally; however, post-translational myristoylation of caspase-cleaved proteins is now emerging as a well-established protein modification and as a novel regulator of apoptosis. To identify additional post-translationally myristoylated proteins, we engineered a plasmid vector encoding for a caspase-cleavable reporter protein named tandem reporter assay for myristoylation of proteins post-translationally (TRAMPP). pTRAMPP consists of tdTomato-DEVD-"test myristoylation sequence"-enhanced green fluorescent protein (EGFP). After induction of apoptosis, the reporter protein is cleaved by caspases, which frees a new N-terminal glycine residue attached to EGFP that can be myristoylated. We used pTRAMPP in appropriately transfected cells to identify 7 post-translationally myristoylated proteins. First, we confirmed the post-translational myristoylation of two previously identified putative substrates, cytoplasmic dynein intermediate chain 2A and PKCε (ctPKCε), and identified 5 more caspase-cleaved potential substrates for myristoylation that include the antiapoptotic regulator of apoptosis, Mcl-1, and the causative agent of Huntington's disease, huntingtin protein. Further investigation revealed that post-translationally myristoylated ctPKCε localized to membranes and increased Erk signaling and degradation of the proapoptotic protein Bim, which prevented a significant loss of mitochondrial potential of 17% over nonmyristoylated ctPKCε in HeLa cells in the presence of apoptotic stimuli. Taken together, these findings suggest a possible antiapoptotic role for post-translationally myristoylated caspase-cleaved ctPKCε.
Assuntos
Clonagem Molecular/métodos , Proteínas de Fluorescência Verde/genética , Ácido Mirístico/metabolismo , Plasmídeos/genética , Proteína Quinase C-épsilon/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Animais , Apoptose/fisiologia , Células COS , Caspases/metabolismo , Chlorocebus aethiops , Genes Reporter/genética , Vetores Genéticos/genética , Células HeLa , Humanos , Processamento de Proteína Pós-Traducional/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais/fisiologia , Transfecção/métodos , Quinases Ativadas por p21/metabolismoRESUMO
Introduction: Huntington disease is an autosomal dominant neurodegenerative disorder which is caused by a CAG repeat expansion in the HTT gene that codes for an elongated polyglutamine tract in the huntingtin (HTT) protein. Huntingtin is subjected to multiple post-translational modifications which regulate its cellular functions and degradation. We have previously identified a palmitoylation site at cysteine 214 (C214), catalyzed by the enzymes ZDHHC17 and ZDHHC13. Reduced palmitoylation level of mutant huntingtin is linked to toxicity and loss of function. Moreover, we have described N-terminal myristoylation by the N-myristoyltransferases of a short fragment of huntingtin (HTT553-586) at glycine 553 (G553) following proteolysis at aspartate 552 (D552). Results: Here, we show that huntingtin is palmitoylated at numerous cysteines: C105, C433, C3134 and C3144. In addition, we confirm that full-length huntingtin is cleaved at D552 and post-translationally myristoylated at G553. Importantly, blocking caspase cleavage at the critical and pathogenic aspartate 586 (D586) significantly increases posttranslational myristoylation of huntingtin. In turn, myristoylation of huntingtin promotes the co-interaction between C-terminal and N-terminal huntingtin fragments, which is also protective. Discussion: This suggests that the protective effect of inhibiting caspase-cleavage at D586 may be mediated through post-translational myristoylation of huntingtin at G553.
RESUMO
One of the first molecular events in neurodegenerative diseases, regardless of etiology, is protein mislocalization. Protein mislocalization in neurons is often linked to proteostasis deficiencies leading to the build-up of misfolded proteins and/or organelles that contributes to cellular toxicity and cell death. By understanding how proteins mislocalize in neurons, we can develop novel therapeutics that target the earliest stages of neurodegeneration. A critical mechanism regulating protein localization and proteostasis in neurons is the protein-lipid modification S-acylation, the reversible addition of fatty acids to cysteine residues. S-acylation is more commonly referred to as S-palmitoylation or simply palmitoylation, which is the addition of the 16-carbon fatty acid palmitate to proteins. Like phosphorylation, palmitoylation is highly dynamic and tightly regulated by writers (i.e., palmitoyl acyltransferases) and erasers (i.e., depalmitoylating enzymes). The hydrophobic fatty acid anchors proteins to membranes; thus, the reversibility allows proteins to be re-directed to and from membranes based on local signaling factors. This is particularly important in the nervous system, where axons (output projections) can be meters long. Any disturbance in protein trafficking can have dire consequences. Indeed, many proteins involved in neurodegenerative diseases are palmitoylated, and many more have been identified in palmitoyl-proteomic studies. It follows that palmitoyl acyl transferase enzymes have also been implicated in numerous diseases. In addition, palmitoylation can work in concert with cellular mechanisms, like autophagy, to affect cell health and protein modifications, such as acetylation, nitrosylation, and ubiquitination, to affect protein function and turnover. Limited studies have further revealed a sexually dimorphic pattern of protein palmitoylation. Therefore, palmitoylation can have wide-reaching consequences in neurodegenerative diseases.
RESUMO
Lowering mutant huntingtin (mHTT) in the central nervous system (CNS) using antisense oligonucleotides (ASOs) is a promising approach currently being evaluated in clinical trials for Huntington disease (HD). However, the therapeutic potential of ASOs in HD patients is limited by their inability to cross the blood-brain barrier (BBB). In non-human primates, intrathecal infusion of ASOs results in limited brain distribution, with higher ASO concentrations in superficial regions and lower concentrations in deeper regions, such as the basal ganglia. To address the need for improved delivery of ASOs to the brain, we are evaluating the therapeutic potential of apolipoprotein A-I nanodisks (apoA-I NDs) as novel delivery vehicles for mHTT-lowering ASOs to the CNS after intranasal administration. Here, we have demonstrated the ability of apoA-I nanodisks to bypass the BBB after intranasal delivery in the BACHD model of HD. Following intranasal administration of apoA-I NDs, apoA-I protein levels were elevated along the rostral-caudal brain axis, with highest levels in the most rostral brain regions including the olfactory bulb and frontal cortex. Double-label immunohistochemistry indicates that both the apoA-I and ASO deposit in neurons. Most importantly, a single intranasal dose of apoA-I ASO-NDs significantly reduces mHTT levels in the brain regions most affected in HD, namely the cortex and striatum. This approach represents a novel non-invasive means for improving delivery and brain distribution of oligonucleotide therapies and enhancing likelihood of efficacy. Improved ASO delivery to the brain has widespread application for treatment of many other CNS disorders.
Assuntos
Doença de Huntington , Oligonucleotídeos Antissenso , Animais , Oligonucleotídeos Antissenso/uso terapêutico , Apolipoproteína A-I/genética , Encéfalo/metabolismo , Barreira Hematoencefálica/metabolismo , Doença de Huntington/tratamento farmacológico , Doença de Huntington/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismoRESUMO
Cullin (Cul)-based E3 ubiquitin ligases are activated through the attachment of Nedd8 to the Cul protein. In yeast, Dcn1 (defective in Cul neddylation 1 protein) functions as a scaffold-like Nedd8 E3-ligase by interacting with its Cul substrates and the Nedd8 E2 Ubc12. Human cells express 5 Dcn1-like (DCNL) proteins each containing a C-terminal potentiating neddylation domain but distinct amino-terminal extensions. Although the UBA-containing DCNL1 and DCNL2 are likely functional homologues of yeast Dcn1, DCNL3 also interacts with human Culs and is able to complement the neddylation defect of yeast dcn1Delta cells. DCNL3 down-regulation by RNAi decreases Cul neddylation, and overexpression of a Cul3 mutant deficient in DCNL3 binding interferes with Cul3 function in vivo. Interestingly, DCNL3 accumulates at the plasma membrane through a conserved, lipid-modified motif at the N terminus. Membrane-bound DCNL3 is able to recruit Cul3 to membranes and is functionally important for Cul3 neddylation in vivo. We conclude that DCNL proteins function as nonredundant Cul Nedd8-E3 ligases. Moreover, the diversification of the N termini in mammalian Dcn1 homologues may contribute to substrate specificity by regulating their subcellular localization.