Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Theor Appl Genet ; 133(10): 2775-2796, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32556394

RESUMO

KEY MESSAGE: QTL analyses of two bi-parental mapping populations with AC Barrie as a parent revealed numerous FHB-resistance QTL unique to each population and uncovered novel variation near Fhb1. Fusarium head blight (FHB) is a destructive disease of wheat worldwide, leading to severe yield and quality losses. The genetic basis of native FHB resistance was examined in two populations: a recombinant inbred line population from the cross Cutler/AC Barrie and a doubled haploid (DH) population from the cross AC Barrie/Reeder. Numerous QTL were detected among the two mapping populations with many being cross-specific. Photoperiod insensitivity at Ppd-D1 and dwarfing at Rht-B1 and Rht-D1 was associated with increased FHB susceptibility. Anthesis date QTL at or near the Vrn-A1 and Vrn-B1 loci co-located with major FHB-resistance QTL in the AC Barrie/Reeder population. The loci were epistatic for both traits, such that DH lines with both late alleles were considerably later to anthesis and had reduced FHB symptoms (i.e., responsible for the epistatic interaction). Interestingly, AC Barrie contributed FHB resistance near the Fhb1 locus in the Cutler population and susceptibility in the Reeder population. Analyses of the Fhb1 candidate genes PFT and TaHRC confirmed that AC Barrie, Cutler, and Reeder do not carry the Sumai-3 Fhb1 gene. Resistance QTL were also detected at the expected locations of Fhb2 and Fhb5. The native FHB-resistance QTL detected near Fhb1, Fhb2, and Fhb5 do not appear to be as effective as Fhb1, Fhb2, and Fhb5 from Sumai-3. The presence of awns segregated at the B1 awn inhibitor locus in both populations, but was only associated with FHB resistance in the Cutler/AC Barrie population suggesting linkage caused the association rather than pleiotropy.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Triticum/genética , Alelos , Mapeamento Cromossômico , Fusarium/patogenicidade , Genes de Plantas , Genótipo , Fenótipo , Doenças das Plantas/microbiologia , Triticum/microbiologia
2.
J Synchrotron Radiat ; 25(Pt 6): 1719-1726, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30407182

RESUMO

Synchrotron radiation X-ray fluorescence microscopy is frequently used to investigate the spatial distribution of elements within a wide range of samples. Interrogation of heterogeneous samples that contain large concentration ranges has the potential to produce image artefacts due to the profile of the X-ray beam. The presence of these artefacts and the distribution of flux within the beam profile can significantly affect qualitative and quantitative analyses. Two distinct correction methods have been generated by referencing the beam profile itself or by employing an adaptive-thresholding procedure. Both methods significantly improve qualitative imaging by removing the artefacts without compromising the low-intensity features. The beam-profile correction method improves quantitative results but requires accurate two-dimensional characterization of the X-ray beam profile.

3.
Biochim Biophys Acta Mol Basis Dis ; 1863(6): 1371-1381, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28189722

RESUMO

Defining the mechanisms underlying the programming of early life growth is fundamental for improving adult health and wellbeing. While the association between maternal diet, offspring growth and adult disease risk is well-established, the effect of father's diet on offspring development is largely unknown. Therefore, we fed male mice an imbalanced low protein diet (LPD) to determine the impact on post-fertilisation development and fetal growth. We observed that in preimplantation embryos derived from LPD fed males, expression of multiple genes within the central metabolic AMPK pathway was reduced. In late gestation, paternal LPD programmed increased fetal weight, however, placental weight was reduced, resulting in an elevated fetal:placental weight ratio. Analysis of gene expression patterns revealed increased levels of transporters for calcium, amino acids and glucose within LPD placentas. Furthermore, placental expression of the epigenetic regulators Dnmt1 and Dnmt3L were increased also, coinciding with altered patterns of maternal and paternal imprinted genes. More strikingly, we observed fetal skeletal development was perturbed in response to paternal LPD. Here, while offspring of LPD fed males possessed larger skeletons, their bones comprised lower volumes of high mineral density in combination with reduced maturity of bone apatite. These data offer new insight in the underlying programming mechanisms linking poor paternal diet at the time of conception with the development and growth of his offspring.


Assuntos
Blastocisto/metabolismo , Proteínas Alimentares , Epigênese Genética , Desenvolvimento Fetal , Regulação da Expressão Gênica no Desenvolvimento , Desenvolvimento Musculoesquelético , Complicações na Gravidez/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Deficiência de Proteína/metabolismo , Animais , Blastocisto/patologia , Feminino , Masculino , Camundongos , Gravidez , Complicações na Gravidez/patologia , Efeitos Tardios da Exposição Pré-Natal/patologia , Deficiência de Proteína/patologia
4.
Phys Chem Chem Phys ; 19(12): 8504-8515, 2017 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-28287216

RESUMO

We use a combination of classical molecular dynamics simulation and neutron diffraction to identify the atomic structure of five different Mg-Zn-Ca bulk metallic glasses, covering a range of compositions with substantially different behaviour when implanted in vitro. There is very good agreement between the structures obtained from computer simulation and those found experimentally. Bond lengths and the total correlation function do not change significantly with composition. The zinc and calcium bonding shows differences between composition: the distribution of Zn-Ca bond lengths becomes narrower with increasing Zn content, and the preference for Zn and Ca to avoid bonding to themselves or each other becomes less strong, and, for Zn-Ca, transforms into a positive preference to bond to each other. This transition occurs at about the same Zn content at which the behaviour on implantation changes, hinting at a possible structural connection. A very broad distribution of Voronoi polyhedra are also found, and this distribution broadens with increasing Zn content. The efficient cluster packing model, which is often used to describe the structure of bulk metallic glasses, was found not to describe these systems well.

5.
J Mater Sci Mater Med ; 25(8): 1865-73, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24801063

RESUMO

Previous studies have suggested that incorporating relatively small quantities of titanium dioxide into bioactive glasses may result in an increase in bioactivity and hydroxyapatite formation. The present work therefore investigated the in vitro bioactivity of a titanium doped bioglass and compared the results with 45S5 bioglass. Apatite formation was evaluated for bioglass and Ti-bioglass in the presence and absence of foetal calf serum. Scanning electron microscopy (SEM) images were used to evaluate the surface development and energy dispersive X-ray measurements provided information on the elemental ratios. X-ray diffraction spectra confirmed the presence of apatite formation. Cell viability was assessed for bone marrow stromal cells under direct and indirect contact conditions and cell adhesion was assessed using SEM.


Assuntos
Materiais Biocompatíveis , Cerâmica , Titânio/química , Animais , Microscopia Eletrônica de Varredura , Ratos , Ratos Wistar
6.
Biomed Mater ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39226916

RESUMO

Osteosarcoma is the mostly commonly occurring primary bone cancer. Despite comprehensive treatment programs including neoadjuvant chemotherapy and tumour resection, survival rates have not improved significantly since the 1970s. Survival rates are dramatically reduced for patients who suffer a local recurrence. Furthermore, primary bone cancer patients are at increased risk of bone fractures. Consequently, there is an urgent need for alternative treatment options. In this paper we report the development of novel gallium doped bioactive glass that selectively kill bone cancer cells whilst simultaneously stimulating new bone growth. Here we show, using a combination of MTT, LIVE/DEAD assays and image analysis, that bioactive glasses containing gallium oxide are highly toxic and reduce both the proliferation and migration of bone cancer cells (Saos-2) in a dose dependant manner. Glasses containing 5 mol% gallium oxide reduced the viability of osteosarcoma cells by 99% without being cytotoxic to the non-cancerous normal human osteoblasts (NHOst) control cells. Furthermore, FTIR and Energy-dispersive X-ray spectroscopy results confirmed the formation of an amorphous calcium phosphate / hydroxy apatite layer on the surface of the bioactive glass particulates, after 7 days incubating in simulated body fluid, indicating the early stages of bone formation. These materials show significant potential for use in bone cancer applications as part of a multimodal treatment. .

7.
Phys Chem Chem Phys ; 15(22): 8529-43, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-23518599

RESUMO

Rare-earth co-doping in inorganic materials has a long-held tradition of facilitating highly desirable optoelectronic properties for their application to the laser industry. This study concentrates specifically on rare-earth phosphate glasses, (R2O3)x(R'2O3)y(P2O5)(1-(x+y)), where (R, R') denotes (Ce, Er) or (La, Nd) co-doping and the total rare-earth composition corresponds to a range between metaphosphate, RP3O9, and ultraphosphate, RP5O14. Thereupon, the effects of rare-earth co-doping on the local structure are assessed at the atomic level. Pair-distribution function analysis of high-energy X-ray diffraction data (Q(max) = 28 Å(-1)) is employed to make this assessment. Results reveal a stark structural invariance to rare-earth co-doping which bears testament to the open-framework and rigid nature of these glasses. A range of desirable attributes of these glasses unfold from this finding; in particular, a structural simplicity that will enable facile molecular engineering of rare-earth phosphate glasses with 'dial-up' lasing properties. When considered together with other factors, this finding also demonstrates additional prospects for these co-doped rare-earth phosphate glasses in nuclear waste storage applications. This study also reveals, for the first time, the ability to distinguish between P-O and P[double bond, length as m-dash]O bonding in these rare-earth phosphate glasses from X-ray diffraction data in a fully quantitative manner. Complementary analysis of high-energy X-ray diffraction data on single rare-earth phosphate glasses of similar rare-earth composition to the co-doped materials is also presented in this context. In a technical sense, all high-energy X-ray diffraction data on these glasses are compared with analogous low-energy diffraction data; their salient differences reveal distinct advantages of high-energy X-ray diffraction data for the study of amorphous materials.

8.
Biomed Mater ; 18(4)2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37158047

RESUMO

With the advent of nanotechnology, there has been an extensive interest in the antimicrobial potential of metals. The rapid and widespread development of antimicrobial-resistant and multidrug-resistant bacteria has prompted recent research into developing novel or alternative antimicrobial agents. In this study, the antimicrobial efficacy of metallic copper, cobalt, silver and zinc nanoparticles was assessed againstEscherichia coli(NCTC 10538),S. aureus(ATCC 6538) along with three clinical isolates ofStaphylococcus epidermidis(A37, A57 and A91) and three clinical isolates ofE. coli(Strains 1, 2 and 3) recovered from bone marrow transplant patients and patients with cystitis respectively. Antimicrobial sensitivity assays, including agar diffusion and broth macro-dilution to determine minimum inhibitory and bactericidal concentrations (MIC/MBC) and time-kill/synergy assays, were used to assess the antimicrobial efficacy of the agents. The panel of test microorganisms, including antibiotic-resistant strains, demonstrated a broad range of sensitivity to the metals investigated. MICs of the type culture strains were in the range of 0.625-5.0 mg ml-1. While copper and cobalt exhibited no difference in sensitivity between Gram-positive and Gram-negative microorganisms, silver and zinc showed strain specificity. A significant decrease (p< 0.001) in the bacterial density ofE. coliandS. aureuswas demonstrated by silver, copper and zinc in as little as two hours. Furthermore, combining metal nanoparticles reduced the time required to achieve a complete kill.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Humanos , Cobre , Prata/farmacologia , Zinco , Cobalto , Staphylococcus aureus , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
9.
Metallomics ; 15(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37193667

RESUMO

Exposure to exogenous particles is of increasing concern to human health. Characterizing the concentrations, chemical species, distribution, and involvement of the stimulus with the tissue microanatomy is essential in understanding the associated biological response. However, no single imaging technique can interrogate all these features at once, which confounds and limits correlative analyses. Developments of synchronous imaging strategies, allowing multiple features to be identified simultaneously, are essential to assess spatial relationships between these key features with greater confidence. Here, we present data to first highlight complications of correlative analysis between the tissue microanatomy and elemental composition associated with imaging serial tissue sections. This is achieved by assessing both the cellular and elemental distributions in three-dimensional space using optical microscopy on serial sections and confocal X-ray fluorescence spectroscopy on bulk samples, respectively. We propose a new imaging strategy using lanthanide-tagged antibodies with X-ray fluorescence spectroscopy. Using simulations, a series of lanthanide tags were identified as candidate labels for scenarios where tissue sections are imaged. The feasibility and value of the proposed approach are shown where an exposure of Ti was identified concurrently with CD45 positive cells at sub-cellular resolutions. Significant heterogeneity in the distribution of exogenous particles and cells can be present between immediately adjacent serial sections showing a clear need of synchronous imaging methods. The proposed approach enables elemental compositions to be correlated with the tissue microanatomy in a highly multiplexed and non-destructive manner at high spatial resolutions with the opportunity for subsequent guided analysis.


Assuntos
Elementos da Série dos Lantanídeos , Microscopia , Humanos
10.
Langmuir ; 28(50): 17465-76, 2012 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-23171477

RESUMO

The aim was to determine the most effective calcium precursor for synthesis of sol-gel hybrids and for improving homogeneity of sol-gel bioactive glasses. Sol-gel derived bioactive calcium silicate glasses are one of the most promising materials for bone regeneration. Inorganic/organic hybrid materials, which are synthesized by incorporating a polymer into the sol-gel process, have also recently been produced to improve toughness. Calcium nitrate is conventionally used as the calcium source, but it has several disadvantages. Calcium nitrate causes inhomogeneity by forming calcium-rich regions, and it requires high temperature treatment (>400 °C) for calcium to be incorporated into the silicate network. Nitrates are also toxic and need to be burnt off. Calcium nitrate therefore cannot be used in the synthesis of hybrids as the highest temperature used in the process is typically 40-60 °C. Therefore, a different precursor is needed that can incorporate calcium into the silica network and enhance the homogeneity of the glasses at low (room) temperature. In this work, calcium methoxyethoxide (CME) was used to synthesize sol-gel bioactive glasses with a range of final processing temperatures from 60 to 800 °C. Comparison is made between the use of CME and calcium chloride and calcium nitrate. Using advanced probe techniques, the temperature at which Ca is incorporated into the network was identified for 70S30C (70 mol % SiO(2), 30 mol % CaO) for each of the calcium precursors. When CaCl(2) was used, the Ca did not seem to enter the network at any of the temperatures used. In contrast, Ca from CME entered the silica network at room temperature, as confirmed by X-ray diffraction, (29)Si magic angle spinning nuclear magnetic resonance spectroscopy, and dissolution studies. CME should be used in preference to calcium salts for hybrid synthesis and may improve homogeneity of sol-gel glasses.


Assuntos
Cloreto de Cálcio/química , Compostos de Cálcio/química , Cálcio/química , Vidro/química , Nitratos/química , Transição de Fase , Silicatos/química
11.
Phys Chem Chem Phys ; 14(45): 15807-15, 2012 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-23085992

RESUMO

Melt quenched silicate glasses containing calcium, phosphorus and alkali metals have the ability to promote bone regeneration and to fuse to living bone. Of these glasses 45S5 Bioglass® is the most widely used being sold in over 35 countries as a bone graft product for medical and dental applications; particulate 45S5 is also incorporated into toothpastes to help remineralize the surface of teeth. Recently it has been suggested that adding titanium dioxide can increase the bioactivity of these materials. This work investigates the structural consequences of incorporating 4 mol% TiO(2) into Bioglass® using isotopic substitution (of the Ti) applied to neutron diffraction and X-ray Absorption Near Edge Structure (XANES). We present the first isotopic substitution data applied to melt quench derived Bioglass or its derivatives. Results show that titanium is on average surrounded by 5.2(1) nearest neighbor oxygen atoms. This implies an upper limit of 40% four-fold coordinated titanium and shows that the network connectivity is reduced from 2.11 to 1.97 for small quantities of titanium. Titanium XANES micro-fluorescence confirms the titanium environment is homogenous on the micron length scale within these glasses. Solid state magic angle spinning (MAS) NMR confirms the network connectivity model proposed. Furthermore, the results show the intermediate range order containing Na-O, Ca-O, O-P-O and O-Si-O correlations are unaffected by the addition of small quantities of TiO(2) into these systems.


Assuntos
Titânio/química , Cerâmica/química , Isótopos , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Difração de Nêutrons , Silício , Espectroscopia por Absorção de Raios X
12.
Phys Chem Chem Phys ; 14(35): 12105-13, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22868255

RESUMO

The atomic-scale structure of Bioglass and the effect of substituting lithium for sodium within these glasses have been investigated using neutron diffraction and solid state magic angle spinning (MAS) NMR. Applying an effective isomorphic substitution difference function to the neutron diffraction data has enabled the Na-O and Li-O nearest-neighbour correlations to be isolated from the overlapping Ca-O, O-(P)-O and O-(Si)-O correlations. These results reveal that Na and Li behave in a similar manner within the glassy matrix and do not disrupt the short range order of the network former. Residual differences are attributed solely to the variation in ionic radius between the two species. Successful simplification of the 2 < r (Å) < 3 region via the difference method has enabled all the nearest neighbour correlations to be deconvolved. The diffraction data provides the first direct experimental evidence of split Na-O nearest-neighbour correlations in these melt quench bioactive glasses, and an analogous splitting of the Li-O correlations. The observed correlations are attributed to the metal ions bonded either to bridging or to non-bridging oxygen atoms. (23)Na triple quantum MAS (3QMAS) NMR data corroborates the split Na-O correlations. The structural sites present will be intimately related to the release properties of the glass system in physiological fluids such as plasma and saliva, and hence to the bioactivity of the material. Detailed structural knowledge is therefore a prerequisite for optimizing material design.


Assuntos
Cerâmica/química , Metais Alcalinos/análise , Difração de Nêutrons , Ressonância Magnética Nuclear Biomolecular
13.
ACS Appl Mater Interfaces ; 14(40): 45156-45166, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36170227

RESUMO

Traditional osteosarcoma therapies tend to focus solely on eradicating residual cancer cells and often fail to promote local bone regeneration and even inhibit it due to lack of precise control over target cells, i.e., the treatment affects both normal and cancer cells. Typically, multistep procedures are required for optimal efficacy. Here, we found that a silica-based bioactive material containing 3 mol % gallium oxide selectively kills human osteosarcoma cells and presents excellent in vivo osteointegration, while showing no local or systemic toxicity. Cell culture media conditioned with the proposed material was able to kill 41% of osteosarcoma cells, and no significant deleterious effect on normal human osteoblasts was observed. In addition, rats treated with the gallium-doped material showed excellent material-bone integration with no sign of local toxicity or implant rejection. Systemic biocompatibility investigation did not indicate any sign of toxicity, with no presence of fibrosis or cellular infiltrate in the histological microstructure of the liver and kidneys after 56 days of observation. Taken together, these results show that synergistic bone regeneration and targeted cancer therapy can be combined, paving the way toward new bone cancer treatment approaches.


Assuntos
Neoplasias Ósseas , Gálio , Osteossarcoma , Animais , Neoplasias Ósseas/tratamento farmacológico , Gálio/química , Gálio/farmacologia , Vidro/química , Humanos , Osteossarcoma/tratamento farmacológico , Ratos , Dióxido de Silício
14.
ACS Biomater Sci Eng ; 8(3): 1193-1199, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35199992

RESUMO

The emergence of antimicrobial resistant strains bacteria and a decline in the discovery of new antibiotics has led to the idea of combining various antimicrobials to treat resistant strains and/or polymicrobial infections. Metal oxide-doped glasses have been extensively investigated for their antimicrobial potential; however to date, most experiments have focused on single metal species in isolation. The present study investigates the antimicrobial potential of sodium calcium phosphates (P2O5)50(Na2O)20(CaO)30-X(MO)X, where M is cobalt, copper, or zinc as single species. In addition, this work studied the effect of co-doping glasses containing two different metal ions (Co + Cu, Co + Zn, and Cu + Zn). The antimicrobial efficacy of all glasses was tested against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacterial strains, as well as a fungal strain (Candida albicans). Minimum inhibitory and bactericidal concentrations and time kill/synergy assays were used to assess the antimicrobial activity. An enhanced antimicrobial effect, at 5 mg/mL concentration, was exhibited by cobalt, copper, and zinc oxide glasses alone and in combinations. A synergistic antimicrobial effect was observed by Cu + Co and Cu + Zn against E. coli and Cu + Zn against S. aureus.


Assuntos
Anti-Infecciosos , Óxido de Zinco , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Bactérias , Cobalto/farmacologia , Cobre/farmacologia , Farmacorresistência Bacteriana , Escherichia coli , Fosfatos/farmacologia , Staphylococcus aureus
15.
J Biomed Mater Res A ; 110(12): 1892-1911, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35770805

RESUMO

The substitution of calcium with strontium in bioactive materials has been promising but there has been some concern over the material instability and possible toxicity. The aim of this research was the synthesis and characterization of calcium and strontium substituted bioactive materials and assessment of interactions with local tissues and peripheral elemental migration in an animal model. A bioactive glass, hydroxyapatite and hydraulic calcium silicate with 50% or 100% calcium substitution with strontium were developed and the set materials were characterized immediately after setting and after 30 and 180-days in solution. Following subcutaneous implantation, the local (tissue histology, elemental migration) and systemic effects (elemental deposition after organ digestion) were assessed. The strontium-replaced silicate cements resulted in the synthesis of partially substituted phases and strontium leaching at all-time points. The strontium silicate implanted in the animal model could not be retrieved in over half of the specimens showing the high rate of material digestion. Tissue histology showed that all materials caused inflammation after 30 days of implantation however this subsided and angiogenesis occurred after 180 days. Strontium was not detected in the local tissues or the peripheral organs while all calcium containing materials caused calcium deposition in the kidneys. The tricalcium silicate caused elemental migration of calcium and silicon in the local tissues shown by the elemental mapping but no deposition of calcium was identified in the peripheral organs verified by the assessment of the digested tissues. Strontium can substitute calcium in bioactive materials without adverse local or systemic effects.


Assuntos
Cálcio , Estrôncio , Compostos de Cálcio , Durapatita , Teste de Materiais , Silicatos/farmacologia , Silício , Estrôncio/farmacologia
16.
Nature ; 435(7038): 75-8, 2005 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-15875017

RESUMO

Atomic ordering in network glasses on length scales longer than nearest-neighbour length scales has long been a source of controversy. Detailed experimental information is therefore necessary to understand both the network properties and the fundamentals of glass formation. Here we address the problem by investigating topological and chemical ordering in structurally disordered AX2 systems by applying the method of isotopic substitution in neutron diffraction to glassy ZnCl2. This system may be regarded as a prototypical ionic network forming glass, provided that ion polarization effects are taken into account, and has thus been the focus of much attention. By experiment, we show that both the topological and chemical ordering are described by two length scales at distances greater than nearest-neighbour length scales. One of these is associated with the intermediate range, as manifested by the appearance in the measured diffraction patterns of a first sharp diffraction peak at 1.09(3) A(-1); the other is associated with an extended range, which shows ordering in the glass out to 62(4) A. We also find that these general features are characteristic of glassy GeSe2, a prototypical covalently bonded network material. The results therefore offer structural insight into those length scales that determine many important aspects of supercooled liquid and glass phenomenology.

17.
J Mater Sci Mater Med ; 22(11): 2537-43, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21877222

RESUMO

Synthetic calcium phosphates, despite their bioactivity, are brittle. Calcium phosphate- mullite composites have been suggested as potential dental and bone replacement materials which exhibit increased toughness. Aluminium, present in mullite, has however been linked to bone demineralisation and neurotoxicity: it is therefore important to characterise the materials fully in order to understand their in vivo behaviour. The present work reports the compositional mapping of the interfacial region of a calcium phosphate--20 wt% mullite biocomposite/soft tissue interface, obtained from the samples implanted into the long bones of healthy rabbits according to standard protocols (ISO-10993) for up to 12 weeks. X-ray micro-fluorescence was used to map simultaneously the distribution of Al, P, Si and Ca across the ceramic-soft tissue interface. A well defined and sharp interface region was present between the ceramic and the surrounding soft tissue for each time period examined. The concentration of Al in the surrounding tissue was found to fall by two orders of magnitude, to the background level, within ~35 µm of the implanted ceramic.


Assuntos
Silicatos de Alumínio/química , Fosfatos de Cálcio/química , Cerâmica/química , Microanálise por Sonda Eletrônica , Metais/química , Metais/metabolismo , Animais , Materiais Biocompatíveis/química , Teste de Materiais , Próteses e Implantes , Coelhos , Tempo
18.
Plant Pathol J ; 37(5): 455-464, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34847632

RESUMO

Forty-eight spring barley genotypes were evaluated for deoxynivalenol (DON) concentration under natural infection across 5 years at Harrington, Prince Edward Island. These genotypes were also evaluated for Fusarium head blight (FHB) severity and DON concentration under field nurseries with artificial inoculation of Fusarium graminearum by the grain spawn method across 2 years at Ottawa, Ontario, and one year at Hangzhou, China. Additionally, these genotypes were also evaluated for FHB severity under greenhouse conditions with artificial inoculation of F. graminearum by conidial suspension spray method across 3 years at Ottawa, Ontario. The objective of the study was to investigate if reactions of barley genotypes to artificial FHB inoculation correlate with reactions to natural FHB infection. DON concentration under natural infection was positively correlated with DON concentration (r = 0.47, P < 0.01) and FHB incidence (r = 0.56, P < 0.01) in the artificially inoculated nursery with grain spawn method. Therefore, the grain spawn method can be used to effectively screen for low DON. FHB severity, generated from greenhouse spray, however, was not correlated with DON concentration (r = 0.12, P > 0.05) under natural infection and it was not correlated with DON concentration (r = -0.23, P > 0.05) and FHB incidence (r = 0.19, P > 0.05) in the artificially inoculated nursery with grain spawn method. FHB severity, DON concentration, and yield were affected by year, genotype, and the genotype × year interaction. The effectiveness of greenhouse spray inoculation for indirect selection for low DON concentration requires further studies. Nine of the 48 genotypes were found to contain low DON under natural infection. Island barley had low DON and also had high yield.

19.
J Biomed Mater Res A ; 108(3): 446-457, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31657517

RESUMO

Here, we investigated the biocompatibility of a bioactive sodium calcium silicate glass containing 2.6 mol% Nb2 O5 (denoted BGPN2.6) and compare the results with the archetypal 45S5 bioglass. The glass bioactivity was tested using a range of in vitro and in vivo experiments to assess its suitability for bone regeneration applications. in vitro studies consisted of assessing the cytocompatibility of the BGPN2.6 glass with bone-marrow-derived mesenchymal stem cells (BM-MSCs). Systemic biocompatibility was verified by means of the quantification of biochemical markers and histopathology of liver, kidneys, and muscles. The glass genotoxicity was assessed using the micronucleus test. The regeneration of a calvarial defect was assessed using both qualitative and quantitative analysis of three-dimensional microcomputed tomography images. The BGPN2.6 glass was not cytotoxic to BM-MSCs. It is systemically biocompatible causing no signs of damage to high metabolic and excretory organs such as the liver and kidneys. No mutagenic potential was observed in the micronucleus test. MicroCT images showed that BGPN2.6 was able to nearly fully regenerate a critical-sized calvarial defect and was far superior to standard 45S5 Bioglass. Defects filled with BGPN2.6 glass showed over 90% coverage compare to just 66% for 45S5 Bioglass. For one animal the defect was completely filled in 8 weeks. These results clearly show that Nb-containing bioactive glasses are a safe and effective biomaterial for bone replacement.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Substitutos Ósseos/farmacologia , Cerâmica/farmacologia , Nióbio/farmacologia , Animais , Linhagem Celular , Vidro , Humanos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Ratos , Crânio/efeitos dos fármacos , Crânio/lesões
20.
Dent Mater ; 36(3): 343-352, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31924386

RESUMO

OBJECTIVE: The structure of the polymer phase of dental resin-based-composites is highly sensitive to photo-polymerisation variables. The objective of this study was to understand how different polymer structures, generated with different photo-polymerisation protocols, respond to thermal perturbation. METHODS: Experimental resins were prepared from a series of Bis-GMA/TEGDMA blends (40/60, 50/50 and 60/40 wt.%), with either Camphorquinone/DMAEMA or Lucirin TPO as the photo-initiator system. Resins were photo-polymerised, in a disc geometry, at either relatively 'high' (3000 mW cm-2 for 6 s) or 'low' (300 mW cm-2 for 60 s) irradiances ensuring matched radiant exposures (18 J cm-2). Specimens were heated, from 20-160 °C at a rate of 5 °C min-1, whilst simultaneous synchrotron X-ray scattering measurements were taken at 5 °C increments to determine changes in polymer chain segment extension and medium-range order as a function of temperature. For each unique resin composition (n = 3), differential scanning calorimetry was used to measure glass transition temperatures using the same heating protocol. A paired t-test was used to determine significant differences in the glass transition temperature between irradiance protocols and photo-initiator chemistry at ɑ = 0.05. RESULTS: Resins pre-polymerised through the use of TPO and or high irradiances demonstrated a reduced rate of chain extension indicative of lower thermal expansion and a larger decrease in relative order when heated below the glass transition temperature. Above the transition temperature, differences in the rate of chain extension were negligible, but slower converted systems showed greater relative order. There was no significant difference in the glass transition temperature between different photo-initiator systems or irradiance protocols. SIGNIFICANCE: The evolution of chain extension and medium-range order during heating is dependent on the initial polymer structure which is influenced by photo-polymerisation variables. Less ordered systems, generated at faster rates of reactive group conversion displayed reduced chain extension below the glass transition temperature and maintained lower order throughout heating.


Assuntos
Resinas Compostas , Resinas Sintéticas , Bis-Fenol A-Glicidil Metacrilato , Teste de Materiais , Polietilenoglicóis , Polimerização , Ácidos Polimetacrílicos , Resinas Vegetais , Temperatura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa