Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(2): e2312880120, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38175867

RESUMO

We unveil the multifractal behavior of Ising spin glasses in their low-temperature phase. Using the Janus II custom-built supercomputer, the spin-glass correlation function is studied locally. Dramatic fluctuations are found when pairs of sites at the same distance are compared. The scaling of these fluctuations, as the spin-glass coherence length grows with time, is characterized through the computation of the singularity spectrum and its corresponding Legendre transform. A comparatively small number of site pairs controls the average correlation that governs the response to a magnetic field. We explain how this scenario of dramatic fluctuations (at length scales smaller than the coherence length) can be reconciled with the smooth, self-averaging behavior that has long been considered to describe spin-glass dynamics.

2.
Phys Rev Lett ; 132(11): 117102, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38563945

RESUMO

Many systems, when initially placed far from equilibrium, exhibit surprising behavior in their attempt to equilibrate. Striking examples are the Mpemba effect and the cooling-heating asymmetry. These anomalous behaviors can be exploited to shorten the time needed to cool down (or heat up) a system. Though, a strategy to design these effects in mesoscopic systems is missing. We bring forward a description that allows us to formulate such strategies, and, along the way, makes natural these paradoxical behaviors. In particular, we study the evolution of macroscopic physical observables of systems freely relaxing under the influence of one or two instantaneous thermal quenches. The two crucial ingredients in our approach are timescale separation and a nonmonotonic temperature evolution of an important state function. We argue that both are generic features near a first-order transition. Our theory is exemplified with the one-dimensional Ising model in a magnetic field using analytic results and numerical experiments.

3.
Proc Natl Acad Sci U S A ; 116(31): 15350-15355, 2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-31311870

RESUMO

The Mpemba effect occurs when a hot system cools faster than an initially colder one, when both are refrigerated in the same thermal reservoir. Using the custom-built supercomputer Janus II, we study the Mpemba effect in spin glasses and show that it is a nonequilibrium process, governed by the coherence length ξ of the system. The effect occurs when the bath temperature lies in the glassy phase, but it is not necessary for the thermal protocol to cross the critical temperature. In fact, the Mpemba effect follows from a strong relationship between the internal energy and ξ that turns out to be a sure-tell sign of being in the glassy phase. Thus, the Mpemba effect presents itself as an intriguing avenue for the experimental study of the coherence length in supercooled liquids and other glass formers.

4.
Proc Natl Acad Sci U S A ; 114(8): 1838-1843, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28174274

RESUMO

We have performed a very accurate computation of the nonequilibrium fluctuation-dissipation ratio for the 3D Edwards-Anderson Ising spin glass, by means of large-scale simulations on the special-purpose computers Janus and Janus II. This ratio (computed for finite times on very large, effectively infinite, systems) is compared with the equilibrium probability distribution of the spin overlap for finite sizes. Our main result is a quantitative statics-dynamics dictionary, which could allow the experimental exploration of important features of the spin-glass phase without requiring uncontrollable extrapolations to infinite times or system sizes.

5.
Phys Rev Lett ; 122(24): 240603, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31322399

RESUMO

We provide a nontrivial test of supersymmetry in the random-field Ising model at five spatial dimensions, by means of extensive zero-temperature numerical simulations. Indeed, supersymmetry relates correlation functions in a D-dimensional disordered system with some other correlation functions in a D-2 clean system. We first show how to check these relationships in a finite-size scaling calculation and then perform a high-accuracy test. While the supersymmetric predictions are satisfied even to our high accuracy at D=5, they fail to describe our results at D=4.

6.
Phys Rev Lett ; 119(11): 110502, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28949216

RESUMO

Physical implementations of quantum annealing unavoidably operate at finite temperatures. We point to a fundamental limitation of fixed finite temperature quantum annealers that prevents them from functioning as competitive scalable optimizers and show that to serve as optimizers annealer temperatures must be appropriately scaled down with problem size. We derive a temperature scaling law dictating that temperature must drop at the very least in a logarithmic manner but also possibly as a power law with problem size. We corroborate our results by experiment and simulations and discuss the implications of these to practical annealers.

7.
J Chem Phys ; 147(8): 084704, 2017 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-28863547

RESUMO

We present a three-dimensional Ising model where lines of equal spins are frozen such that they form an ordered framework structure. The frame spins impose an external field on the rest of the spins (active spins). We demonstrate that this "porous Ising model" can be seen as a minimal model for condensation transitions of gas molecules in metal-organic frameworks. Using Monte Carlo simulation techniques, we compare the phase behavior of a porous Ising model with that of a particle-based model for the condensation of methane (CH4) in the isoreticular metal-organic framework IRMOF-16. For both models, we find a line of first-order phase transitions that end in a critical point. We show that the critical behavior in both cases belongs to the 3D Ising universality class, in contrast to other phase transitions in confinement such as capillary condensation.

8.
Phys Rev Lett ; 116(22): 227201, 2016 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-27314735

RESUMO

By performing a high-statistics simulation of the D=4 random-field Ising model at zero temperature for different shapes of the random-field distribution, we show that the model is ruled by a single universality class. We compute to a high accuracy the complete set of critical exponents for this class, including the correction-to-scaling exponent. Our results indicate that in four dimensions (i) dimensional reduction as predicted by the perturbative renormalization group does not hold and (ii) three independent critical exponents are needed to describe the transition.

9.
Proc Natl Acad Sci U S A ; 109(17): 6452-6, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22493229

RESUMO

Spin glasses are a longstanding model for the sluggish dynamics that appear at the glass transition. However, spin glasses differ from structural glasses in a crucial feature: they enjoy a time reversal symmetry. This symmetry can be broken by applying an external magnetic field, but embarrassingly little is known about the critical behavior of a spin glass in a field. In this context, the space dimension is crucial. Simulations are easier to interpret in a large number of dimensions, but one must work below the upper critical dimension (i.e., in d < 6) in order for results to have relevance for experiments. Here we show conclusive evidence for the presence of a phase transition in a four-dimensional spin glass in a field. Two ingredients were crucial for this achievement: massive numerical simulations were carried out on the Janus special-purpose computer, and a new and powerful finite-size scaling method.

10.
Phys Rev Lett ; 110(22): 227201, 2013 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-23767743

RESUMO

We solve a long-standing puzzle in statistical mechanics of disordered systems. By performing a high-statistics simulation of the D=3 random-field Ising model at zero temperature for different shapes of the random-field distribution, we show that the model is ruled by a single universality class. We compute the complete set of critical exponents for this class, including the correction-to-scaling exponent, and we show, to high numerical accuracy, that scaling is described by two independent exponents. Discrepancies with previous works are explained in terms of strong scaling corrections.

11.
Phys Rev E ; 108(4-1): 044146, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37978671

RESUMO

Finite-size scaling above the upper critical dimension is a long-standing puzzle in the field of statistical physics. Even for pure systems various scaling theories have been suggested, partially corroborated by numerical simulations. In the present manuscript we address this problem in the even more complicated case of disordered systems. In particular, we investigate the scaling behavior of the random-field Ising model at dimension D=7, i.e., above its upper critical dimension D_{u}=6, by employing extensive ground-state numerical simulations. Our results confirm the hypothesis that at dimensions D>D_{u}, linear length scale L should be replaced in finite-size scaling expressions by the effective scale L_{eff}=L^{D/D_{u}}. Via a fitted version of the quotients method that takes this modification, but also subleading scaling corrections into account, we compute the critical point of the transition for Gaussian random fields and provide estimates for the full set of critical exponents. Thus, our analysis indicates that this modified version of finite-size scaling is successful also in the context of the random-field problem.

12.
Phys Rev E ; 104(4-1): 044114, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34781476

RESUMO

Cooling and heating faster a system is a crucial problem in science, technology, and industry. Indeed, choosing the best thermal protocol to reach a desired temperature or energy is not a trivial task. Noticeably, we find that the phase transitions may speed up thermalization in systems where there are no conserved quantities. In particular, we show that the slow growth of magnetic domains shortens the overall time that the system takes to reach a final desired state. To prove that statement, we use intensive numerical simulations of a prototypical many-body system, namely, the two-dimensional Ising model.

13.
Sci Rep ; 7(1): 1044, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28432287

RESUMO

The debate around the potential superiority of quantum annealers over their classical counterparts has been ongoing since the inception of the field. Recent technological breakthroughs, which have led to the manufacture of experimental prototypes of quantum annealing optimizers with sizes approaching the practical regime, have reignited this discussion. However, the demonstration of quantum annealing speedups remains to this day an elusive albeit coveted goal. We examine the power of quantum annealers to provide a different type of quantum enhancement of practical relevance, namely, their ability to serve as useful samplers from the ground-state manifolds of combinatorial optimization problems. We study, both numerically by simulating stoquastic and non-stoquastic quantum annealing processes, and experimentally, using a prototypical quantum annealing processor, the ability of quantum annealers to sample the ground-states of spin glasses differently than thermal samplers. We demonstrate that (i) quantum annealers sample the ground-state manifolds of spin glasses very differently than thermal optimizers (ii) the nature of the quantum fluctuations driving the annealing process has a decisive effect on the final distribution, and (iii) the experimental quantum annealer samples ground-state manifolds significantly differently than thermal and ideal quantum annealers. We illustrate how quantum annealers may serve as powerful tools when complementing standard sampling algorithms.

14.
Phys Rev E ; 95(4-1): 042117, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28505873

RESUMO

The random-field Ising model is one of the few disordered systems where the perturbative renormalization group can be carried out to all orders of perturbation theory. This analysis predicts dimensional reduction, i.e., that the critical properties of the random-field Ising model in D dimensions are identical to those of the pure Ising ferromagnet in D-2 dimensions. It is well known that dimensional reduction is not true in three dimensions, thus invalidating the perturbative renormalization group prediction. Here, we report high-precision numerical simulations of the 5D random-field Ising model at zero temperature. We illustrate universality by comparing different probability distributions for the random fields. We compute all the relevant critical exponents (including the critical slowing down exponent for the ground-state finding algorithm), as well as several other renormalization-group invariants. The estimated values of the critical exponents of the 5D random-field Ising model are statistically compatible to those of the pure 3D Ising ferromagnet. These results support the restoration of dimensional reduction at D=5. We thus conclude that the failure of the perturbative renormalization group is a low-dimensional phenomenon. We close our contribution by comparing universal quantities for the random-field problem at dimensions 3≤D<6 to their values in the pure Ising model at D-2 dimensions, and we provide a clear verification of the Rushbrooke equality at all studied dimensions.

15.
Phys Rev E ; 93(6): 063308, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27415388

RESUMO

It was recently shown [Phys. Rev. Lett. 110, 227201 (2013)PRLTAO0031-900710.1103/PhysRevLett.110.227201] that the critical behavior of the random-field Ising model in three dimensions is ruled by a single universality class. This conclusion was reached only after a proper taming of the large scaling corrections of the model by applying a combined approach of various techniques, coming from the zero- and positive-temperature toolboxes of statistical physics. In the present contribution we provide a detailed description of this combined scheme, explaining in detail the zero-temperature numerical scheme and developing the generalized fluctuation-dissipation formula that allowed us to compute connected and disconnected correlation functions of the model. We discuss the error evolution of our method and we illustrate the infinite limit-size extrapolation of several observables within phenomenological renormalization. We present an extension of the quotients method that allows us to obtain estimates of the critical exponent α of the specific heat of the model via the scaling of the bond energy and we discuss the self-averaging properties of the system and the algorithmic aspects of the maximum-flow algorithm used.

16.
Sci Rep ; 5: 15324, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26483257

RESUMO

Recent advances in quantum technology have led to the development and manufacturing of experimental programmable quantum annealing optimizers that contain hundreds of quantum bits. These optimizers, commonly referred to as 'D-Wave' chips, promise to solve practical optimization problems potentially faster than conventional 'classical' computers. Attempts to quantify the quantum nature of these chips have been met with both excitement and skepticism but have also brought up numerous fundamental questions pertaining to the distinguishability of experimental quantum annealers from their classical thermal counterparts. Inspired by recent results in spin-glass theory that recognize 'temperature chaos' as the underlying mechanism responsible for the computational intractability of hard optimization problems, we devise a general method to quantify the performance of quantum annealers on optimization problems suffering from varying degrees of temperature chaos: A superior performance of quantum annealers over classical algorithms on these may allude to the role that quantum effects play in providing speedup. We utilize our method to experimentally study the D-Wave Two chip on different temperature-chaotic problems and find, surprisingly, that its performance scales unfavorably as compared to several analogous classical algorithms. We detect, quantify and discuss several purely classical effects that possibly mask the quantum behavior of the chip.

17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 66(2 Pt 2): 026112, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12241242

RESUMO

We perform a large-scale Monte Carlo simulation of the three-dimensional Ising model on simple cubic lattices of size L(3) with L=128 and 256. We determine the corresponding structure factor (Fourier transform of the two-point function) and compare it with several approximations and with experimental results. We also compute the turbidity as a function of the momentum of the incoming radiation, focusing in particular on the deviations from the Ornstein-Zernike expression of Puglielli and Ford.

18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 68(3 Pt 2): 036136, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-14524861

RESUMO

We perform a high-statistics simulation of the three-dimensional randomly dilute Ising model on cubic lattices L3 with L< or =256. We choose a particular value of the density, x=0.8, for which the leading scaling corrections are suppressed. We determine the critical exponents, obtaining nu=0.683(3), eta=0.035(2), beta=0.3535(17), and alpha=-0.049(9), in agreement with previous numerical simulations. We also estimate numerically the fixed-point values of the four-point zero-momentum couplings that are used in field-theoretical fixed-dimension studies. Although these results somewhat differ from those obtained using perturbative field theory, the field-theoretical estimates of the critical exponents do not change significantly if the Monte Carlo result for the fixed point is used. Finally, we determine the six-point zero-momentum couplings, relevant for the small-magnetization expansion of the equation of state, and the invariant amplitude ratio R(+)(xi) that expresses the universality of the free-energy density per correlation volume. We find R(+)(xi)=0.2885(15).

19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 68(1 Pt 2): 016110, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12935203

RESUMO

We compute the dynamic structure factor for the three-dimensional Ising model with a purely relaxational dynamics (model A). We perform a perturbative calculation in the epsilon expansion, at two loops in the high-temperature phase and at one loop in the temperature magnetic-field plane, and a Monte Carlo simulation in the high-temperature phase. We find that the dynamic structure factor is very well approximated by its mean-field Gaussian form up to moderately large values of frequency omega and momentum k. In the region we can investigate, k(xi) less than or equal 5, omega(tau) less than or equal 10, where xi is the correlation length and tau is the zero-momentum autocorrelation time, deviations are at most of a few percent.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa