Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Headache ; 63(8): 1061-1069, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37638410

RESUMO

OBJECTIVE: To examine whether sensory hypersensitivity contributes to headache-related disability in a secondary analysis of patients with post-traumatic headache. BACKGROUND: Up to one-third of individuals with traumatic brain injuries report persistent headache 3 months post-injury. High rates of allodynia and photophobia have been observed in clinical studies and animal models of post-traumatic headache, but we do not fully understand how sensory amplifications impact post-traumatic headache-related disability. METHODS: We identified a cross-sectional sample of patients from the American Registry for Migraine Research database with new or worsening headaches post-head injury from 2016 to 2020 and performed a secondary analysis of those data. We modeled the relationship between sensory sensitivity and Migraine Disability Assessment scores using questionnaires. Candidate variables included data collection features (study site and year), headache-related and general clinical features (headache frequency, migraine diagnosis, abuse history, sex, age, cognitive and affective symptom scores), and sensory symptoms (related to light, sound, and touch sensitivity). RESULTS: The final sample included 193 patients (median age 46, IQR 22; 161/193, 83.4% female). Migraine Disability Assessment scores ranged from 0 to 260 (median 47, IQR 87). The final model included allodynia, hyperacusis, photosensitivity, headache days per month, abuse history, anxiety and depression, cognitive dysfunction, and age (R2 = 0.43). An increase of one point in allodynia score corresponded to a 3% increase in headache disability (95% CI: 0%-7%; p = 0.027), an increase of one-tenth of a point in the photosensitivity score corresponded to a 12% increase (95% CI: 3%-25%; p = 0.002), and an increase of one point in the hyperacusis score corresponded to a 2% increase (95% CI: 0%-4%; p = 0.016). CONCLUSIONS: Increased photosensitivity, allodynia, and hyperacusis were associated with increased headache-related disability in this sample of patients with post-traumatic headache. Symptoms of sensory amplification likely contribute to post-traumatic headache-related disability and merit an ongoing investigation into their potential as disease markers and treatment targets.


Assuntos
Hipersensibilidade , Transtornos de Enxaqueca , Cefaleia Pós-Traumática , Feminino , Animais , Masculino , Estudos Transversais , Hiperacusia/epidemiologia , Hiperacusia/etiologia , Hiperalgesia , Cefaleia , Transtornos de Enxaqueca/complicações , Transtornos de Enxaqueca/epidemiologia
2.
Headache ; 63(5): 672-682, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37140215

RESUMO

OBJECTIVE: To present an updated version of the Utah Photophobia Symptom Impact Scale version 2 (UPSIS2), providing robust clinical and psychometric validation, to improve headache-specific evaluation of light sensitivity and headache-related photophobia. BACKGROUND: The original UPSIS filled a gap in available tools for assessment of headache-associated light sensitivity by providing patient-reported evaluation of the impact of light sensitivity on activities of daily living (ADLs). We have since revised the original questionnaire to provide a more robust item construct and refined validation approach. METHODS: We conducted a psychometric validation of the UPSIS2 through a primary analysis of an online survey of volunteers with recurrent headaches recruited from the University of Utah clinics and surrounding community. Volunteers completed the original UPSIS and UPSIS2 questionnaire versions in addition to measures of headache impact, disability, and frequency. The UPSIS2 now includes a pre-defined recall period and a 1-4 Likert scale with standardized response anchors to improve clarity. Internal construct validity, external construct validity, and test-retest reliability, were evaluated. RESULTS: Responses were obtained from 163 volunteers, with UPSIS2 scores ranging from 15 to 57 (out of a possible 15-60) with a mean (standard deviation) of 32.4 (8.80). Construct validity was satisfactory, as evidenced by sufficient unidimensionality, monotonicity, and local independence. Reliability was excellent, with Rasch test reliability = 0.90 and Cronbach's alpha = 0.92, and an intraclass correlation of 0.79 (95% confidence interval 0.65-0.88) for participants who took the test twice. UPSIS2 correlates well with other headache measures (Spearman's correlations >0.50), as well as the original UPSIS (Spearman's correlation = 0.87), indicating good convergent validity. UPSIS2 scores differ significantly across International Classification of Headache Disorders (third edition) groups, indicating good known group validity. CONCLUSION: The UPSIS2 provides a well-validated headache-specific outcome measure for the assessment of photophobia impact on ADLs.


Assuntos
Atividades Cotidianas , Fotofobia , Humanos , Fotofobia/diagnóstico , Fotofobia/etiologia , Reprodutibilidade dos Testes , Utah , Psicometria , Cefaleia , Inquéritos e Questionários
3.
Front Neurol ; 13: 1027348, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36588909

RESUMO

Purpose: Peripheral neuropathies with autonomic nervous system involvement are a recognized cause of gastrointestinal dysmotility for a wide spectrum of diseases. Recent advances in wireless motility capsule testing allow improved sampling of regional and whole gut motility to aid in the diagnosis of gastrointestinal motility disorders and may provide additional insight into segment-specific enteric involvement of peripheral neuropathies affecting autonomic nervous system function. Methods: We utilized standardized autonomic nervous system (ANS) reflex assessment and wireless motility capsule testing to evaluate 20 individuals with idiopathic autonomic neuropathy and unexplained gastrointestinal symptoms. Additionally, we examined the relationship between quantifiable autonomic neuropathy and gastrointestinal dysmotility at specific neuroanatomical levels. Symptom profiles were evaluated using the 31-item Composite Autonomic Symptom Score questionnaire (COMPASS-31) and compared to wireless motility capsule data. Results: We found that transit times were predominately abnormal (delayed) in the foregut (10 of 20; 50%), while contractility abnormalities were far more prominent in the hindgut (17 of 20; 85%), and that motility and symptom patterns, as assessed by the COMPASS-31 GI domain items, generally corresponded. Finally, we also found that there was neuroanatomical overlap in the presence of autonomic reflex abnormalities and WMC-based transit and/or contractility abnormalities. Conclusions: We found that transit times were predominately abnormal in the foregut and midgut, while contractility abnormalities were far more prominent in the hindgut in individuals with idiopathic autonomic neuropathy. There was a high rate of agreement in segmental wireless motility capsule data with neuroanatomically corresponding standardized ANS function measures (e.g., cardiovagal, sudomotor, adrenergic). Expanded sudomotor testing, including additional neuroanatomical segments, could provide additional indirect assessment of visceral involvement in ANS dysfunction.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa