Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 39(48): 17133-17145, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37975861

RESUMO

We present a comprehensive thermogravimetric analysis (TGA) of polyethylenimine (PEI)-impregnated resorcinol-formaldehyde (RF) aerogels. While numerous studies focus on PEI-impregnated SBA, RF materials have been less examined, despite their interest and specificities. As most articles on PEI-impregnated porous materials follow typical experimental methods defined for SBA, particularities of RF-PEI materials could remain unheeded. The design of nonisothermal TGA protocols, completed with nitrogen isotherms, based on the systematic filling of the matrix delivers a fundamental understanding of the relationship between the structure and function. This study demonstrates (i) the competition between the matrix and PEI for CO2-physisorption (φ) and CO2-chemisorption (χ), (ii) the hysteresis ([Formula: see text]) of CO2 capture at low temperature attributed to the kinetic (K) hindrance of CO2 diffusion (D) through PEI film/plugs limiting the chemisorption, and (iii) the thermodynamic (θ) equilibrium limiting the capture at high temperature. At variance with SBA-PEI materials, the first layers of PEI in RF are readily available for CO2 capture given that this matrix does not covalently bind PEI as SBA. A facile method allows the discrimination between physi- and chemisorption, exhibiting how the former decreases with PEI coverage. The CO2 capture hysteresis, while seldom introduced or discussed, underlines that the commonly accepted operating temperature of the "maximum capture" is based on an incomplete experiment. Through isotherm adsorption analysis, we correlate the evolution of this maximum to the morphological distribution of PEI. This contribution highlights the specificities of RF-PEI and the advantages of our TGA protocol in understanding the structure/function relationship of this kind of material by avoiding the typical direct applications of SBA-specific protocols. The method is straightforward, does not need large-scale facilities, and is applicable to other materials. Its easiness and rapidness are suited to high-volume studies, befitting for the comprehensive evaluation of interacting factors such as the matrix's nature, pore size, and PEI weight.

2.
Molecules ; 27(9)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35566272

RESUMO

Incipient wetness impregnation was employed to decorate two N-doped graphene-rich matrixes with iron, nickel, cobalt, and copper nanoparticles. The N-doped matrix was wetted with methanol solutions of the corresponding nitrates. After agitation and solvent evaporation, reduction at 800 °C over the carbon matrix promoted the formation of nanoparticles. The mass of the metal fraction was limited to 5 wt. % to determine if limited quantities of metallic nanoparticles catalyze the hydrogen capture/release of nanoconfined LiBH4. Isotherms of nitrogen adsorption afforded the textural characterization of the matrixes. Electronic microscopy displayed particles of definite size, evenly distributed on the matrixes, as confirmed by X-ray diffraction. The same techniques assessed the impact of LiBH4 50 vol. % impregnation on nanoparticle distribution and size. The hydrogen storage properties of these materials were evaluated by differential scanning calorimetry and two cycles of volumetric studies. X-ray diffraction allowed us to follow the evolution of the material after two cycles of hydrogen capture-release. We discuss if limited quantities of coordination metals can improve the hydrogen storage properties of nanoconfined LiBH4, and which critical parameters might restrain the synergies between nanoconfinement and the presence of metal catalysts.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa