Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Mol Biol Rep ; 51(1): 912, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39153092

RESUMO

Glioblastoma is the most aggressive brain cancer with an unfavorable prognosis for patient survival. Glioma stem cells, a subpopulation of cancer cells, drive tumor initiation, self-renewal, and resistance to therapy and, together with the microenvironment, play a crucial role in glioblastoma maintenance and progression. Neurotransmitters such as noradrenaline, dopamine, and serotonin have contrasting effects on glioblastoma development, stimulating or inhibiting its progression depending on the cellular context and through their action on glioma stem cells, perhaps changing the epigenetic landscape. Recent studies have revealed that serotonin and dopamine induce chromatin modifications related to transcriptional plasticity in the mammalian brain and possibly in glioblastoma; however, this topic still needs to be explored because of its potential implications for glioblastoma treatment. Also, it is essential to consider that neurotransmitters' effects depend on the tumor's microenvironment since it can significantly influence the response and behavior of cancer cells. This review examines the possible role of neurotransmitters as regulators of glioblastoma development, focusing on their impact on the chromatin of glioma stem cells.


Assuntos
Neoplasias Encefálicas , Cromatina , Glioblastoma , Células-Tronco Neoplásicas , Neurotransmissores , Microambiente Tumoral , Humanos , Glioblastoma/metabolismo , Glioblastoma/genética , Glioblastoma/patologia , Neurotransmissores/metabolismo , Cromatina/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Microambiente Tumoral/genética , Epigênese Genética , Dopamina/metabolismo , Animais , Serotonina/metabolismo , Regulação Neoplásica da Expressão Gênica
2.
Curr Microbiol ; 81(5): 133, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592489

RESUMO

Zika virus (ZIKV) infections have been associated with severe clinical outcomes, which may include neurological manifestations, especially in newborns with intrauterine infection. However, licensed vaccines and specific antiviral agents are not yet available. Therefore, a safe and low-cost therapy is required, especially for pregnant women. In this regard, metformin, an FDA-approved drug used to treat gestational diabetes, has previously exhibited an anti-ZIKA effect in vitro in HUVEC cells by activating AMPK. In this study, we evaluated metformin treatment during ZIKV infection in vitro in a JEG3-permissive trophoblast cell line. Our results demonstrate that metformin affects viral replication and protein synthesis and reverses cytoskeletal changes promoted by ZIKV infection. In addition, it reduces lipid droplet formation, which is associated with lipogenic activation of infection. Taken together, our results indicate that metformin has potential as an antiviral agent against ZIKV infection in vitro in trophoblast cells.


Assuntos
Metformina , Infecção por Zika virus , Zika virus , Recém-Nascido , Gravidez , Feminino , Humanos , Infecção por Zika virus/tratamento farmacológico , Linhagem Celular Tumoral , Trofoblastos , Antivirais/farmacologia , Metformina/farmacologia
3.
EMBO Rep ; 22(6): e50600, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33860601

RESUMO

Dishevelled (DVL) critically regulates Wnt signaling and contributes to a wide spectrum of diseases and is important in normal and pathophysiological settings. However, how it mediates diverse cellular functions remains poorly understood. Recent discoveries have revealed that constitutive Wnt pathway activation contributes to breast cancer malignancy, but the mechanisms by which this occurs are unknown and very few studies have examined the nuclear role of DVL. Here, we have performed DVL3 ChIP-seq analyses and identify novel target genes bound by DVL3. We show that DVL3 depletion alters KMT2D binding to novel targets and changes their epigenetic marks and mRNA levels. We further demonstrate that DVL3 inhibition leads to decreased tumor growth in two different breast cancer models in vivo. Our data uncover new DVL3 functions through its regulation of multiple genes involved in developmental biology, antigen presentation, metabolism, chromatin remodeling, and tumorigenesis. Overall, our study provides unique insight into the function of nuclear DVL, which helps to define its role in mediating aberrant Wnt signaling.


Assuntos
Neoplasias , Via de Sinalização Wnt , Proteínas Desgrenhadas/genética , Proteínas Desgrenhadas/metabolismo , Humanos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Sequências Reguladoras de Ácido Nucleico , Via de Sinalização Wnt/genética
4.
Ann Hepatol ; 28(1): 100879, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36436771

RESUMO

INTRODUCTION AND OBJECTIVES: Intrahepatic cholestasis is a frequent disease during pregnancy. It is unknown if liver function alterations produce specific placental lesions. The aim of this study was to evaluate placental histopathological changes in patients with intrahepatic cholestasis of pregnancy (ICP), and to explore correlations between the placental histopathology and hepatic function alteration or patient comorbidities, and body mass index. PATIENTS AND METHODS: A retrospective cohort study included women with ICP, most of them showing comorbidities such as overweight/obesity, preeclampsia and gestational diabetes. They were attended at the National Institute of Perinatology in Mexico City for three years. Placental histopathological alterations were evaluated according to the Amsterdam Placental Workshop Group Consensus Statement. Data was analyzed using Graph-Pad Prism 5. RESULTS: The results indicated that the placenta of ICP patients showed many histopathological alterations; however, no correlations were observed between the increase in bile acids or liver functional parameters and specific placental lesions. The most frequent comorbidities found in ICP patients were obesity, overweight and preeclampsia. Surprisingly, high percentage of ICP patients did not respond to UDCA treatment independently of the BMI group to which they belonged. CONCLUSION: The data suggest that ICP contribute to placental lesions. In addition, in patients with normal weight, an increase of chorangiosis and a reduced accelerated villous maturation without syncytial knots were observed in comparison with overweight and obese patients. It is necessary to improve the medical strategies in the treatment and liver disfunction surveillance of ICP patients.


Assuntos
Colestase Intra-Hepática , Pré-Eclâmpsia , Complicações na Gravidez , Gravidez , Feminino , Humanos , Placenta/patologia , Índice de Massa Corporal , Sobrepeso/epidemiologia , Estudos Retrospectivos , Complicações na Gravidez/epidemiologia , Colestase Intra-Hepática/diagnóstico , Colestase Intra-Hepática/epidemiologia , Colestase Intra-Hepática/patologia , Obesidade/diagnóstico , Obesidade/epidemiologia
5.
Int J Mol Sci ; 24(19)2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37833921

RESUMO

Leukemias of the AML, CML, and CLL types are the most common blood cancers worldwide, making them a major global public health problem. Furthermore, less than 24% of patients treated with conventional chemotherapy (low-risk patients) and 10-15% of patients ineligible for conventional chemotherapy (high-risk patients) survive five years. The low levels of survival are mainly due to toxicity and resistance to chemotherapy or other medication, the latter leading to relapse of the disease, which is the main obstacle to the treatment of leukemia. Drug resistance may include different molecular mechanisms, among which epigenetic regulators are involved. Silent information regulator 2 homolog 1 (SIRT1) is an epigenetic factor belonging to the sirtuin (SIRT) family known to regulate aspects of chromatin biology, genome stability, and metabolism, both in homeostasis processes and in different diseases, including cancer. The regulatory functions of SIRT1 in different biological processes and molecular pathways are dependent on the type and stage of the neoplasia; thus, it may act as both an oncogenic and tumor suppressor factor and may also participate in drug resistance. In this review, we explore the role of SIRT1 in drug-resistant leukemia and its potential as a therapeutic target.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias Hematológicas , Leucemia , Sirtuína 1 , Humanos , Cromatina , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/terapia , Leucemia/genética , Leucemia/terapia , Sirtuína 1/genética , Sirtuína 1/metabolismo
6.
Int J Mol Sci ; 24(19)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37834378

RESUMO

Bisphenols such as bisphenol A (BPA), S (BPS), C (BPC), F (BPF), AF (BPAF), tetrabromobisphenol, nonylphenol, and octylphenol are plasticizers used worldwide to manufacture daily-use articles. Exposure to these compounds is related to many pathologies of public health importance, such as infertility. Using a protector compound against the reproductive toxicological effects of bisphenols is of scientific interest. Melatonin and vitamins have been tested, but the results are not conclusive. To this end, this systematic review and meta-analysis compared the response of reproductive variables to melatonin and vitamin administration as protectors against damage caused by bisphenols. We search for controlled studies of male rats exposed to bisphenols to induce alterations in reproduction, with at least one intervention group receiving melatonin or vitamins (B, C, or E). Also, molecular docking simulations were performed between the androgen (AR) and estrogen receptors (ER), melatonin, and vitamins. About 1234 records were initially found; finally, 13 studies were qualified for review and meta-analysis. Melatonin plus bisphenol improves sperm concentration and viability of sperm and increases testosterone serum levels compared with control groups; however, groups receiving vitamins plus bisphenols had lower sperm concentration, total testis weight, and testosterone serum levels than the control. In the docking analysis, vitamin E had the highest negative MolDock score, representing the best binding affinity with AR and ER, compared with other vitamins and melatonin in the docking. Our findings suggest that vitamins could act as an endocrine disruptor, and melatonin is most effective in protecting against the toxic effects of bisphenols.


Assuntos
Disruptores Endócrinos , Melatonina , Masculino , Ratos , Animais , Melatonina/farmacologia , Vitaminas , Simulação de Acoplamento Molecular , Sêmen/metabolismo , Compostos Benzidrílicos/toxicidade , Compostos Benzidrílicos/química , Reprodução , Receptores de Estrogênio , Vitamina A , Vitamina K , Testosterona/metabolismo , Disruptores Endócrinos/toxicidade , Disruptores Endócrinos/química
7.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36614306

RESUMO

Glycosylation is a post-translational modification that affects the stability, structure, antigenicity and charge of proteins. In the immune system, glycosylation is involved in the regulation of ligand-receptor interactions, such as in B-cell and T-cell activating receptors. Alterations in glycosylation have been described in several autoimmune diseases, such as systemic lupus erythematosus (SLE), in which alterations have been found mainly in the glycosylation of B lymphocytes, T lymphocytes and immunoglobulins. In immunoglobulin G of lupus patients, a decrease in galactosylation, sialylation, and nucleotide fucose, as well as an increase in the N-acetylglucosamine bisector, are observed. These changes in glycoisolation affect the interactions of immunoglobulins with Fc receptors and are associated with pericarditis, proteinuria, nephritis, and the presence of antinuclear antibodies. In T cells, alterations have been described in the glycosylation of receptors involved in activation, such as the T cell receptor; these changes affect the affinity with their ligands and modulate the binding to endogenous lectins such as galectins. In T cells from lupus patients, a decrease in galectin 1 binding is observed, which could favor activation and reduce apoptosis. Furthermore, these alterations in glycosylation correlate with disease activity and clinical manifestations, and thus have potential use as biomarkers. In this review, we summarize findings on glycosylation alterations in SLE and how they relate to immune system defects and their clinical manifestations.


Assuntos
Linfócitos B , Imunoglobulina G , Lúpus Eritematoso Sistêmico , Linfócitos T , Humanos , Linfócitos B/metabolismo , Glicosilação , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/metabolismo , Linfócitos T/metabolismo
8.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37047828

RESUMO

Polycystic ovary syndrome (PCOS) is an endocrine disease associated with infertility and metabolic disorders in reproductive-aged women. In this study, we evaluated the expression of eight genes related to endometrial function and their DNA methylation levels in the endometrium of PCOS patients and women without the disease (control group). In addition, eight of the PCOS patients underwent intervention with metformin (1500 mg/day) and a carbohydrate-controlled diet (type and quantity) for three months. Clinical and metabolic parameters were determined, and RT-qPCR and MeDIP-qPCR were used to evaluate gene expression and DNA methylation levels, respectively. Decreased expression levels of HOXA10, GAB1, and SLC2A4 genes and increased DNA methylation levels of the HOXA10 promoter were found in the endometrium of PCOS patients compared to controls. After metformin and nutritional intervention, some metabolic and clinical variables improved in PCOS patients. This intervention was associated with increased expression of HOXA10, ESR1, GAB1, and SLC2A4 genes and reduced DNA methylation levels of the HOXA10 promoter in the endometrium of PCOS women. Our preliminary findings suggest that metformin and a carbohydrate-controlled diet improve endometrial function in PCOS patients, partly by modulating DNA methylation of the HOXA10 gene promoter and the expression of genes implicated in endometrial receptivity and insulin signaling.


Assuntos
Metformina , Síndrome do Ovário Policístico , Humanos , Feminino , Adulto , Metformina/farmacologia , Metformina/uso terapêutico , Metformina/metabolismo , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/complicações , Metilação de DNA , Endométrio/metabolismo , Expressão Gênica , Dieta
9.
Int J Mol Sci ; 23(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35562968

RESUMO

Bacteriophages offer an alternative for the treatment of multidrug-resistant bacterial diseases as their mechanism of action differs from that of antibiotics. However, their application in the clinical field is limited to specific cases of patients with few or no other alternative therapies. This systematic review assesses the effectiveness and safety of phage therapy against multidrug-resistant bacteria through the evaluation of studies published over the past decade. To that end, a bibliographic search was carried out in the PubMed, Science Direct, and Google Scholar databases. Of the 1500 studies found, 27 met the inclusion criteria, with a total of 165 treated patients. Treatment effectiveness, defined as the reduction in or elimination of the bacterial load, was 85%. Except for two patients who died from causes unrelated to phage therapy, no serious adverse events were reported. This shows that phage therapy could be an alternative treatment for patients with infections associated with multidrug-resistant bacteria. However, owing to the phage specificity required for the treatment of various bacterial strains, this therapy must be personalized in terms of bacteriophage type, route of administration, and dosage.


Assuntos
Infecções Bacterianas , Bacteriófagos , Terapia por Fagos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Infecções Bacterianas/microbiologia , Farmacorresistência Bacteriana Múltipla , Humanos
10.
Int J Mol Sci ; 23(11)2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35682958

RESUMO

Gestational diabetes mellitus (GDM) is the most common metabolic disorder of pregnancy and has considerable short- and long-term consequences for the health of both the mother and the newborn. Within its pathophysiology, genetic, nutritional, epigenetic, immunological, and hormonal components have been described. Within the last two items, it is known that different hormones and cytokines secreted by adipose tissue, known collectively as adipokines, are involved in the metabolic alterations underlying GDM. Although the maternal circulating profile of adipokines in GDM has been extensively studied, and there are excellent reviews on the subject, it is in recent years that more progress has been made in the study of their expression in visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), placenta, and their concentrations in the umbilical circulation. Thus, this review compiles and organizes the most recent findings on the maternal and umbilical circulating profile and the levels of expression of adipokines in VAT, SAT, and placenta in GDM.


Assuntos
Diabetes Gestacional , Adipocinas/metabolismo , Tecido Adiposo/metabolismo , Diabetes Gestacional/metabolismo , Feminino , Humanos , Recém-Nascido , Gordura Intra-Abdominal/metabolismo , Gravidez , Gordura Subcutânea/metabolismo
11.
Int J Mol Sci ; 23(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36077240

RESUMO

Sialic acids and heparan sulfates make up the outermost part of the cell membrane and the extracellular matrix. Both structures are characterized by being negatively charged, serving as receptors for various pathogens, and are highly expressed in the respiratory and digestive tracts. Numerous viruses use heparan sulfates as receptors to infect cells; in this group are HSV, HPV, and SARS-CoV-2. Other viruses require the cell to express sialic acids, as is the case in influenza A viruses and adenoviruses. This review aims to present, in a general way, the participation of glycoconjugates in viral entry, and therapeutic strategies focused on inhibiting the interaction between the virus and the glycoconjugates. Interestingly, there are few studies that suggest the participation of both glycoconjugates in the viruses addressed here. Considering the biological redundancy that exists between heparan sulfates and sialic acids, we propose that it is important to jointly evaluate and design strategies that contemplate inhibiting the interactions of both glycoconjugates. This approach will allow identifying new receptors and lead to a deeper understanding of interspecies transmission.


Assuntos
COVID-19 , Vírus , Glicoconjugados/metabolismo , Heparitina Sulfato/metabolismo , Humanos , Ácido N-Acetilneuramínico/metabolismo , Receptores Virais/metabolismo , SARS-CoV-2 , Ácidos Siálicos/metabolismo , Sulfatos , Ligação Viral , Vírus/metabolismo
12.
Biol Reprod ; 105(2): 439-448, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34057176

RESUMO

Serotonin or 5-hydroxytryptamine (5-HT) is a biogenic amine involved in regulating several functions, including development. However, its impact on human embryo development has been poorly studied. The present work investigated the expression and distribution of the main components of the serotoninergic system in human amniotic tissue and human amniotic epithelial cells (hAEC) in vitro, as an alternative model of early human embryo development. Amniotic membranes from full-term healthy pregnancies were used. Human amnion tissue or hAEC isolated from the amnion was processed for reverse transcription-polymerase chain reaction and immunofluorescence analyses of the main components of the serotoninergic system. We found the expression of tryptophan hydroxylase type 1 (TPH1), type 2 (TPH2), serotonin transporter (SERT), monoamine oxidase-A (MAOA), as well as HTR1D and HTR7 receptors at mRNA level in amnion tissue as well in hAEC. Interestingly, we found the presence of 5-HT in the nucleus of the cells in amnion tissue, whereas it was located in the cytoplasm of isolated hAEC. We detected TPH1, TPH2, and HTR1D receptor in both the nucleus and cytoplasm. SERT, MAOA, and HTR7 receptor were only observed in the cytoplasm. The results presented herein show, for the first time, the presence of the serotoninergic system in human amnion in vivo and in vitro.


Assuntos
Âmnio/metabolismo , Células Epiteliais/metabolismo , Serotonina/metabolismo , Âmnio/química , Humanos
13.
Drug Dev Ind Pharm ; 47(10): 1546-1555, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34791982

RESUMO

OBJECTIVE: The aim of this work was to characterize Lippia graveolens oleoresins, obtained by Supercritical Fluid Extraction (SFE), from crops collected at different locations in Mexico. The antimicrobial effect of oleoresins was tested in reference strains and clinical isolates of susceptible and multidrug-resistant (MDR) strains of Enterococcus faecalis and Staphylococcus aureus. SIGNIFICANCE: The increasing of MDR strains is becoming a global public health problem that has led to the search for new treatments, and essential oils have resurged as a source of compounds with bactericidal functions. Oregano essential oil has attracted attention recently, however, this oil is mainly obtained by hydro-distillation (uses large amounts of water) or solvents extraction (potential contaminant). SFE has gained popularity as it represents an environmentally friendly technology. METHODS: L. graveolens oleoresins were obtained by SFE, total phenol contents were quantified by Folin-Ciocalteu method, the identification of compounds and thymol and carvacrol quantification was carried out by GC-MS. The antimicrobial activity was tested by minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). RESULTS: SFE showed higher yields compared with the hydro-distillation process. L. graveolens grown in different Mexican locations showed differences in oleoresin composition and a slightly different antimicrobial capacity against clinical isolates. CONCLUSIONS: It was demonstrated that SFE is an efficient technology for extracting L. graveolens oleoresins. Additionally, the solvent-free extraction method and the observed antimicrobial effect increase the applications of these oleoresins in fields, such as cosmetics, food industry, medicine, amongst others.


Assuntos
Anti-Infecciosos , Lippia , Óleos Voláteis , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Resistência a Múltiplos Medicamentos , Enterococcus faecalis , Testes de Sensibilidade Microbiana , Óleos Voláteis/farmacologia , Extratos Vegetais , Staphylococcus aureus
14.
Int J Mol Sci ; 22(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34502370

RESUMO

Gestational diabetes mellitus (GDM) is the most common metabolic complication in pregnancy, which affects the future health of both the mother and the newborn. Its pathophysiology involves nutritional, hormonal, immunological, genetic and epigenetic factors. Among the latter, it has been observed that alterations in DNA (deoxyribonucleic acid) methylation patterns and in the levels of certain micro RNAs, whether in placenta or adipose tissue, are related to well-known characteristics of the disease, such as hyperglycemia, insulin resistance, inflammation and excessive placental growth. Furthermore, epigenetic alterations of gestational diabetes mellitus are observable in maternal blood, although their pathophysiological roles are completely unknown. Despite this, it has not been possible to determine the causes of the epigenetic characteristics of GDM, highlighting the need for integral and longitudinal studies. Based on this, this article summarizes the most relevant and recent studies on epigenetic alterations in placenta, adipose tissue and maternal blood associated with GDM in order to provide the reader with a general overview of the subject and indicate future research topics.


Assuntos
Diabetes Gestacional/genética , Epigênese Genética/genética , Tecido Adiposo/metabolismo , DNA/química , Metilação de DNA/genética , Diabetes Gestacional/metabolismo , Epigênese Genética/fisiologia , Epigenômica/métodos , Feminino , Humanos , MicroRNAs/genética , Placenta/metabolismo , Gravidez , Gestantes
15.
Int J Mol Sci ; 22(9)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34066940

RESUMO

Acute myeloid leukemia (AML), the most common type of leukemia in older adults, is a heterogeneous disease that originates from the clonal expansion of undifferentiated hematopoietic progenitor cells. These cells present a remarkable variety of genes and proteins with altered expression and function. Despite significant advances in understanding the molecular panorama of AML and the development of therapies that target mutations, survival has not improved significantly, and the therapy standard is still based on highly toxic chemotherapy, which includes cytarabine (Ara-C) and allogeneic hematopoietic cell transplantation. Approximately 60% of AML patients respond favorably to these treatments and go into complete remission; however, most eventually relapse, develop refractory disease or chemoresistance, and do not survive for more than five years. Therefore, drug resistance that initially occurs in leukemic cells (primary resistance) or that develops during or after treatment (acquired resistance) has become the main obstacle to AML treatment. In this work, the main molecules responsible for generating chemoresistance to Ara-C in AML are discussed, as well as some of the newer strategies to overcome it, such as the inclusion of molecules that can induce synergistic cytotoxicity with Ara-C (MNKI-8e, emodin, metformin and niclosamide), subtoxic concentrations of chemotherapy (PD0332991), and potently antineoplastic treatments that do not damage nonmalignant cells (heteronemin or hydroxyurea + azidothymidine).


Assuntos
Citarabina/uso terapêutico , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Animais , Morte Celular/efeitos dos fármacos , Citarabina/farmacologia , Humanos , Modelos Biológicos
16.
Int J Mol Sci ; 22(24)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34948222

RESUMO

In several central nervous system diseases, it has been reported that inflammation may be related to the etiologic process, therefore, therapeutic strategies are being implemented to control inflammation. As the nervous system and the immune system maintain close bidirectional communication in physiological and pathological conditions, the modulation of inflammation through the cholinergic anti-inflammatory reflex has been proposed. In this review, we summarized the evidence supporting chemical stimulation with cholinergic agonists and vagus nerve stimulation as therapeutic strategies in the treatment of various central nervous system pathologies, and their effect on inflammation.


Assuntos
Doenças do Sistema Nervoso Central , Antagonistas Colinérgicos/uso terapêutico , Animais , Doenças do Sistema Nervoso Central/tratamento farmacológico , Doenças do Sistema Nervoso Central/metabolismo , Doenças do Sistema Nervoso Central/patologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia
17.
Reproduction ; 158(1): R27-R40, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30959484

RESUMO

Polycystic ovary syndrome (PCOS) is the leading endocrine and metabolic disorder in premenopausal women characterized by hyperandrogenism and abnormal development of ovarian follicles. To date, the PCOS etiology remains unclear and has been related to insulin resistance, obesity, type 2 diabetes mellitus, cardiovascular disease and infertility, among other morbidities. Substantial evidence illustrates the impact of genetic, intrauterine and environmental factors on the PCOS etiology. Lately, epigenetic factors have garnered considerable attention in the pathogenesis of PCOS considering that changes in the content of DNA methylation, histone acetylation and noncoding RNAs have been reported in various tissues of women with this disease. DNA methylation is changed in the peripheral and umbilical cord blood, as well as in ovarian and adipose tissue of women with PCOS, suggesting the involvement of this epigenetic modification in the pathogenesis of the disease. Perhaps, these defects in DNA methylation promote the deregulation of genes involved in inflammation, hormone synthesis and signaling and glucose and lipid metabolism. Research on the role of DNA methylation in the pathogenesis of PCOS is just beginning, and several issues await investigation. This review aims to provide an overview of current research focused on DNA methylation and PCOS, as well as discuss the perspectives regarding this topic.


Assuntos
Metilação de DNA , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/patologia , Feminino , Humanos
18.
Ann Hepatol ; 18(4): 613-619, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31122880

RESUMO

INTRODUCTION AND OBJECTIVES: Niemann-Pick disease type A (NPD-A) and B (NPD-B) are lysosomal storage diseases with a birth prevalence of 0.4-0.6/100,000. They are caused by a deficiency in acid sphingomyelinase, an enzyme encoded by SMPD1. We analyzed the phenotype and genotype of four unrelated Mexican patients, one with NPD-A and three with NPD-B. PATIENTS AND METHODS: Four female patients between 1 and 7 years of age were diagnosed with NPD-A or NPD-B by hepatosplenomegaly, among other clinical characteristics, and by determining the level of acid sphingomyelinase enzymatic activity and sequencing of the SMPD1 gene. Additionally, a 775bp amplicon of SMPD1 (from 11:6393835_6394609, including exons 5 and 6) was analyzed by capillary sequencing in a control group of 50 unrelated healthy Mexican Mestizos. RESULTS: An infrequent variant (c.1343A>G p.Tyr448Cys) was observed in two patients. One is the first NPD-A homozygous patient reported with this variant and the other a compound heterozygous NPD-B patient with the c.1829_1831delGCC p.Arg610del variant. Another compound heterozygous patient had the c.1547A>G p.His516Arg variant (not previously described in affected individuals) along with the c.1805G>A p.Arg602His variant. A new c.1263+8C>T pathogenic variant was encountered in a homozygous state in a NPD-B patient. Among the healthy control individuals there was a heterozygous carrier for the c.1550A>T (rs142787001) pathogenic variant, but none with the known pathogenic variants in the 11:6393835_6394609 region of SMPD1. CONCLUSIONS: The present study provides further NPD-A or B phenotype-genotype correlations. We detected a heterozygous carrier with a pathogenic variant in 1/50 healthy Mexican mestizos.


Assuntos
Doença de Niemann-Pick Tipo A/genética , Doença de Niemann-Pick Tipo B/genética , Esfingomielina Fosfodiesterase/genética , Adolescente , Adulto , Criança , Pré-Escolar , Epistaxe/fisiopatologia , Feminino , Triagem de Portadores Genéticos , Genótipo , Transtornos do Crescimento/fisiopatologia , Voluntários Saudáveis , Hepatomegalia/fisiopatologia , Heterozigoto , Humanos , Lactente , Fígado/patologia , Fígado/ultraestrutura , México , Doença de Niemann-Pick Tipo A/metabolismo , Doença de Niemann-Pick Tipo A/patologia , Doença de Niemann-Pick Tipo A/fisiopatologia , Doença de Niemann-Pick Tipo B/metabolismo , Doença de Niemann-Pick Tipo B/patologia , Doença de Niemann-Pick Tipo B/fisiopatologia , Fenótipo , Esfingomielina Fosfodiesterase/metabolismo , Esplenomegalia/fisiopatologia , Adulto Jovem
19.
Int J Mol Sci ; 20(13)2019 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-31284700

RESUMO

Several studies indicate that bisphenol A (BPA) and phthalates may have a role in the development of metabolic diseases using different molecular pathways, including epigenetic regulatory mechanisms. However, it is unclear whether exposure to these chemicals modifies serum levels of miRNAs associated with gestational diabetes mellitus (GDM) risk. In the present study, we evaluated the serum levels of miRNAs associated with GDM (miR-9-5p, miR-16-5p, miR-29a-3p and miR-330-3p) and urinary levels of phthalate metabolites (mono-n-butyl phthalate (MBP), mono-isobutyl phthalate (MiBP), mono-benzyl phthalate (MBzP) and mono(2-ethyl hexyl) phthalate (MEHP)) and bisphenol A in GDM patients and women without GDM during the second trimester of gestation. We observed higher levels of miR-9-5p, miR-29a-3p and miR-330-3p in sera of patients with GDM compared to non-diabetic subjects. Phthalates were detected in 97-100% of urine samples, while BPA only in 40%. Urinary MEHP and BPA concentrations were remarkably higher in both study groups compared to previously reported data. Unadjusted MEHP levels and adjusted BPA levels were higher in non-diabetics than in GDM patients (p = 0.03, p = 0.02). We found positive correlations between adjusted urinary MBzP levels and miR-16-5p expression levels (p < 0.05), adjusted MEHP concentrations and miR-29a-3p expression levels (p < 0.05). We also found negative correlations between unadjusted and adjusted MBP concentrations and miR-29a-3p expression levels (p < 0.0001, p < 0.05), unadjusted MiBP concentrations and miR-29a-3p expression levels (p < 0.01). Urinary MEHP levels reflect a striking exposure to di(2-ethylhexyl) phthalate (DEHP) in pregnant Mexican women. This study highlights the need for a regulatory strategy in the manufacture of several items containing endocrine disruptors in order to avoid involuntary ingestion of these compounds in the Mexican population.


Assuntos
Compostos Benzidrílicos/urina , Diabetes Gestacional/genética , Diabetes Gestacional/urina , Regulação da Expressão Gênica , MicroRNAs/genética , Fenóis/urina , Ácidos Ftálicos/urina , Adulto , Compostos Benzidrílicos/química , Diabetes Gestacional/sangue , Feminino , Humanos , Metaboloma , México , MicroRNAs/sangue , MicroRNAs/metabolismo , Fenóis/química , Ácidos Ftálicos/química , Gravidez , Segundo Trimestre da Gravidez/sangue , Segundo Trimestre da Gravidez/urina , Regulação para Cima/genética
20.
Int J Mol Sci ; 19(4)2018 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-29565801

RESUMO

Periodontitis is a chronic disease that begins with a period of inflammation of the supporting tissues of the teeth table and then progresses, destroying the tissues until loss of the teeth occurs. The restoration of the damaged dental support apparatus is an extremely complex process due to the regeneration of the cementum, the periodontal ligament, and the alveolar bone. Conventional treatment relies on synthetic materials that fill defects and replace lost dental tissue, but these approaches are not substitutes for a real regeneration of tissue. To address this, there are several approaches to tissue engineering for regenerative dentistry, among them, the use of stem cells. Mesenchymal stem cells (MSC) can be obtained from various sources of adult tissues, such as bone marrow, adipose tissue, skin, and tissues of the orofacial area. MSC of dental origin, such as those found in the bone marrow, have immunosuppressive and immunotolerant properties, multipotency, high proliferation rates, and the capacity for tissue repair. However, they are poorly used as sources of tissue for therapeutic purposes. Their accessibility makes them an attractive source of mesenchymal stem cells, so this review describes the field of dental stem cell research and proposes a potential mechanism involved in periodontal tissue regeneration induced by dental MSC.


Assuntos
Células-Tronco Mesenquimais/citologia , Periodontite/terapia , Animais , Humanos , Transplante de Células-Tronco Mesenquimais , Ligamento Periodontal/citologia , Periodonto/citologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa