Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Am J Respir Cell Mol Biol ; 42(4): 404-14, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19502390

RESUMO

Macrophages are the primary lung phagocyte and are instrumental in maintenance of a sterile, noninflamed microenvironment. IFNs are produced in response to bacterial and viral infection, and activate the macrophage to efficiently counteract and remove pathogenic invaders. Respiratory syncytial virus (RSV) inhibits IFN-mediated signaling mechanisms in epithelial cells; however, the effects on IFN signaling in the macrophage are currently unknown. We investigated the effect of RSV infection on IFN-mediated signaling in macrophages. RSV infection inhibited IFN-beta- and IFN-gamma-activated transcriptional mechanisms in primary alveolar macrophages and macrophage cell lines, including the transactivation of important Nod-like receptor family genes, Nod1 and class II transactivator. RSV inhibited IFN-beta- and IFN-gamma-mediated transcriptional activation by two distinct mechanisms. RSV impaired IFN-beta-mediated signal transducer and activator of transcription (STAT)-1 phosphorylation through a mechanism that involves inhibition of tyrosine kinase 2 phosphorylation. In contrast, RSV-impaired transcriptional activation after IFN-gamma stimulation resulted from a reduction in the nuclear STAT1 interaction with the transcriptional coactivator, CBP, and was correlated with increased phosphorylation of STAT1beta, a dominant-negative STAT1 splice variant, in response to IFN-gamma. In support of this concept, overexpression of STAT1beta was sufficient to repress the IFN-gamma-mediated expression of class II transactivator. These results demonstrate that RSV inhibits IFN-mediated transcriptional activation in macrophages, and suggests that paramyxoviruses modulate an important regulatory mechanism that is critical in linking innate and adaptive immune mechanisms after infection.


Assuntos
Interferon-alfa/imunologia , Interferon beta/imunologia , Interferon gama/imunologia , Macrófagos Alveolares/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sinciciais Respiratórios/imunologia , Transcrição Gênica/imunologia , Imunidade Adaptativa , Animais , Proteína de Ligação a CREB/imunologia , Proteína de Ligação a CREB/metabolismo , Linhagem Celular , Feminino , Imunidade Inata , Interferon-alfa/biossíntese , Interferon beta/biossíntese , Interferon gama/biossíntese , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/virologia , Camundongos , Camundongos Endogâmicos BALB C , Proteína Adaptadora de Sinalização NOD1/imunologia , Proteína Adaptadora de Sinalização NOD1/metabolismo , Fosforilação/imunologia , Infecções por Vírus Respiratório Sincicial/metabolismo , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sinciciais Respiratórios/metabolismo , Fator de Transcrição STAT1/imunologia , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais/imunologia , TYK2 Quinase/imunologia , TYK2 Quinase/metabolismo
2.
Bioinformatics ; 23(1): 21-9, 2007 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17050569

RESUMO

MOTIVATION: Little is known regarding the transcriptional mechanisms involved in forming and maintaining epithelial cell lineages of the mammalian respiratory tract. RESULTS: Herein, a motif discovery approach was used to identify novel transcriptional regulators in the lung using genes previously found to be regulated by Foxa2 or Wnt signaling pathways. A human-mouse comparison of both novel and known motifs was also performed. Some of the factors and families identified here were previously shown to be involved epithelial cell differentiation (ETS family, HES-1 and MEIS-1), and ciliogenesis (RFX family), but have never been characterized in lung epithelia. Other unidentified over-represented motifs suggest the existence of novel mammalian lung transcription factors. Of the fraction of motifs examined we describe 25 transcription factor family predictions for lung. Fifteen novel factors were shown here to be expressed in mouse lung, and/or human bronchial or distal lung epithelial tissues or lung epithelial cell lineages. AVAILABILITY: DME: http://rulai.cshl.edu/dme. MATCOMPARE: http://rulai.cshl.edu/MatCompare. MOTIFCLASS is available from the authors.


Assuntos
Biologia Computacional , Células Epiteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Pulmão/citologia , Pulmão/fisiologia , Redes e Vias Metabólicas/genética , Fatores de Transcrição/metabolismo , Algoritmos , Motivos de Aminoácidos/genética , Animais , Diferenciação Celular , Linhagem Celular , Linhagem Celular Tumoral , Fator 3-beta Nuclear de Hepatócito/metabolismo , Humanos , Pulmão/crescimento & desenvolvimento , Camundongos , Morfogênese , Proteínas Nucleares , Especificidade da Espécie , Proteínas Wnt/metabolismo
3.
Mol Biol Cell ; 15(12): 5295-305, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15456898

RESUMO

Most cells on earth exist in a quiescent state. In yeast, quiescence is induced by carbon starvation, and exit occurs when a carbon source becomes available. To understand how cells survive in, and exit from this state, mRNA abundance was examined using oligonucleotide-based microarrays and quantitative reverse transcription-polymerase chain reaction. Cells in stationary-phase cultures exhibited a coordinated response within 5-10 min of refeeding. Levels of >1800 mRNAs increased dramatically (>or=64-fold), and a smaller group of stationary-phase mRNAs decreased in abundance. Motif analysis of sequences upstream of genes clustered by VxInsight identified an overrepresentation of Rap1p and BUF (RPA) binding sites in genes whose mRNA levels rapidly increased during exit. Examination of 95 strains carrying deletions in stationary-phase genes induced identified 32 genes essential for survival in stationary-phase at 37 degrees C. Analysis of these genes suggests that mitochondrial function is critical for entry into stationary-phase and that posttranslational modifications and protection from oxidative stress become important later. The phylogenetic conservation of stationary-phase genes, and our findings that two-thirds of the essential stationary-phase genes have human homologues and of these, many have human homologues that are disease related, demonstrate that yeast is a bona fide model system for studying the quiescent state of eukaryotic cells.


Assuntos
Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica/genética , Genes Essenciais/genética , Genes Fúngicos/genética , Genômica , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Sequência de Bases , Ciclo Celular , Evolução Molecular , Genoma Fúngico , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Deleção de Sequência/genética , Fatores de Tempo , Transcrição Gênica/genética
4.
BMC Bioinformatics ; 7: 343, 2006 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-16839419

RESUMO

BACKGROUND: Modeling of gene expression data from time course experiments often involves the use of linear models such as those obtained from principal component analysis (PCA), independent component analysis (ICA), or other methods. Such methods do not generally yield factors with a clear biological interpretation. Moreover, implicit assumptions about the measurement errors often limit the application of these methods to log-transformed data, destroying linear structure in the untransformed expression data. RESULTS: In this work, a method for the linear decomposition of gene expression data by multivariate curve resolution (MCR) is introduced. The MCR method is based on an alternating least-squares (ALS) algorithm implemented with a weighted least squares approach. The new method, MCR-WALS, extracts a small number of basis functions from untransformed microarray data using only non-negativity constraints. Measurement error information can be incorporated into the modeling process and missing data can be imputed. The utility of the method is demonstrated through its application to yeast cell cycle data. CONCLUSION: Profiles extracted by MCR-WALS exhibit a strong correlation with cell cycle-associated genes, but also suggest new insights into the regulation of those genes. The unique features of the MCR-WALS algorithm are its freedom from assumptions about the underlying linear model other than the non-negativity of gene expression, its ability to analyze non-log-transformed data, and its use of measurement error information to obtain a weighted model and accommodate missing measurements.


Assuntos
Biologia Computacional/métodos , Regulação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Algoritmos , Ciclo Celular , Interpretação Estatística de Dados , Proteínas Fúngicas/química , Perfilação da Expressão Gênica , Modelos Biológicos , Análise Multivariada , Análise de Componente Principal , Saccharomyces cerevisiae/metabolismo , Fatores de Tempo
5.
Nucleic Acids Res ; 31(4): e18, 2003 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-12582263

RESUMO

Microarray analysis is a critically important technology for genome-enabled biology, therefore it is essential that the data obtained be reliable. Current software and normalization techniques for microarray analysis rely on the assumption that fluorescent background within spots is essentially the same throughout the glass slide and can be measured by fluorescence surrounding the spots. This assumption is not valid if background fluorescence is spot-localized. Inaccurate estimates of background fluorescence under the spot create a source of error, especially for low expressed genes. We have identified spot-localized, contaminating fluorescence in the Cy3 channel on several commercial and in-house printed microarray slides. We determined through mock hybridizations (without labeled target) that pre-hybridization scans could not be used to predict the contribution of this contaminating fluorescence after hybridization because the change in spot-to-spot fluorescence after hybridization was too variable. Two solutions to this problem were identified. First, allowing 4 h of exposure to air prior to printing on to Corning UltraGAPS slides significantly reduced contaminating fluorescence intensities to approximately the value of the surrounding glass. Alternatively, application of a novel, hyperspectral imaging scanner and multivariate curve resolution algorithms, allowed the spectral contributions of Cy3 signal, glass, and contaminating fluorescence to be distinguished and quantified after hybridization.


Assuntos
Artefatos , Corantes Fluorescentes/química , Análise de Sequência com Séries de Oligonucleotídeos/normas , Calibragem/normas , Carbocianinas/química , DNA Complementar/química , DNA Complementar/genética , Fluorescência , Genoma Fúngico , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Padrões de Referência , Saccharomyces cerevisiae/genética
6.
BMC Genomics ; 6: 72, 2005 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-15888208

RESUMO

BACKGROUND: Commercial microarray scanners and software cannot distinguish between spectrally overlapping emission sources, and hence cannot accurately identify or correct for emissions not originating from the labeled cDNA. We employed our hyperspectral microarray scanner coupled with multivariate data analysis algorithms that independently identify and quantitate emissions from all sources to investigate three artifacts that reduce the accuracy and reliability of microarray data: skew toward the green channel, dye separation, and variable background emissions. RESULTS: Here we demonstrate that several common microarray artifacts resulted from the presence of emission sources other than the labeled cDNA that can dramatically alter the accuracy and reliability of the array data. The microarrays utilized in this study were representative of a wide cross-section of the microarrays currently employed in genomic research. These findings reinforce the need for careful attention to detail to recognize and subsequently eliminate or quantify the presence of extraneous emissions in microarray images. CONCLUSION: Hyperspectral scanning together with multivariate analysis offers a unique and detailed understanding of the sources of microarray emissions after hybridization. This opportunity to simultaneously identify and quantitate contaminant and background emissions in microarrays markedly improves the reliability and accuracy of the data and permits a level of quality control of microarray emissions previously unachievable. Using these tools, we can not only quantify the extent and contribution of extraneous emission sources to the signal, but also determine the consequences of failing to account for them and gain the insight necessary to adjust preparation protocols to prevent such problems from occurring.


Assuntos
Perfilação da Expressão Gênica/métodos , Genes Fúngicos , Genômica/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Algoritmos , Biologia Computacional/métodos , DNA Complementar/metabolismo , Corantes Fluorescentes/farmacologia , Perfilação da Expressão Gênica/instrumentação , Microscopia de Fluorescência , Análise Multivariada , Análise de Sequência com Séries de Oligonucleotídeos/instrumentação , Controle de Qualidade , Reprodutibilidade dos Testes , Software
7.
Arch Insect Biochem Physiol ; 54(2): 55-67, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14518004

RESUMO

To identify the protein domains responsible for its conserved and specialized functions, putative TFIIB-Related Factor (BRF) from the silkworm (Bombyx mori) was compared with BRFs from other organisms. The Bombyx BRF coding region was assembled from three separate and overlapping cDNA fragments. Fragments encoding the middle portion and the 3' end were discovered in the Bombyx mori Genome Project "Silkbase" collection through sequence homology with human BRF1, and the fragment encoding the N-terminus was isolated in our laboratory using the 5' RACE method. Southern analysis showed that silkworm BRF is encoded by a single-copy gene. Bombyx BRF contains the following domains that have been noted in all other BRFs, and that are likely, therefore, to provide highly conserved functions: a zinc finger domain, an imperfect repeat, three "BRF Homology" domains, and an acidic domain at the C-terminus. As expected from the evolutionary relationships among insects and mammals, Bombyx BRF is more similar overall to Drosophila BRF (55% identical) than to human BRF1 (42% identical). Detailed examination of individual domains reveals a remarkable exception, however. Domain II of Bombyx BRF is more similar to its human counterpart than to Drosophila Domain II. This result indicates that Domain II has undergone unusual divergence in Drosophila, and suggests a structural basis for Drosophila BRF's unique pattern of interaction with other transcription factors.


Assuntos
Bombyx/química , Bombyx/genética , Fator de Transcrição TFIIB/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Southern Blotting , Clonagem Molecular , Sequência Conservada , DNA Complementar/genética , Amplificação de Genes , Genes , Humanos , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Fator de Transcrição TFIIB/química , Fator de Transcrição TFIIB/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa