RESUMO
RESEARCH QUESTION: What is the expression pattern of Raf kinase inhibitory protein (RKIP) in different subtypes of leiomyoma (usual type, cellular, apoplectic or haemorrhagic leiomyoma, leiomyoma with bizarre nuclei and lipoleiomyoma) and leiomyosarcoma specimens, and what is its biological role in leiomyosarcoma cells? DESIGN: Leiomyoma and leiomyosarcoma specimens underwent immunohistochemistry staining. Leiomyosarcoma SK-LMS-1 cell line was RKIP knocked down and RKIP overexpressed, and cell viability, wound healing migration and clonogenicity assays were carried out. RESULTS: A higher immunohistochemical expression of RKIP was observed in bizarre leiomyomas, than in usual-type leiomyomas. Decreased expression was also found in cellular leiomyoma, with generally absent staining in leiomyosarcomas. Upon RKIP expression manipulation in SK-LMS-1 cell line, no major differences were observed in cell viability and migration capacity over time. RKIP knockout, however, resulted in a significant increase in the cell's ability to form colonies (Pâ¯=â¯0.011). CONCLUSION: RKIP distinct expression pattern among leiomyoma histotype and leiomyosarcoma, and its effect on leiomyosarcoma cells on colony formation, encourages further studies of RKIP in uterine smooth muscle disorders.
Assuntos
Biomarcadores Tumorais , Leiomioma , Leiomiossarcoma , Proteína de Ligação a Fosfatidiletanolamina , Neoplasias Uterinas , Humanos , Leiomiossarcoma/metabolismo , Leiomiossarcoma/patologia , Leiomiossarcoma/diagnóstico , Feminino , Neoplasias Uterinas/metabolismo , Neoplasias Uterinas/patologia , Neoplasias Uterinas/genética , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Proteína de Ligação a Fosfatidiletanolamina/genética , Leiomioma/metabolismo , Leiomioma/patologia , Leiomioma/diagnóstico , Biomarcadores Tumorais/metabolismo , Tumor de Músculo Liso/metabolismo , Tumor de Músculo Liso/patologia , Tumor de Músculo Liso/diagnóstico , Linhagem Celular Tumoral , Pessoa de Meia-Idade , Movimento Celular , Adulto , Imuno-HistoquímicaRESUMO
BACKGROUND: Gastrointestinal stromal tumors (GIST) represent a significant clinical challenge due to their metastatic potential and limited treatment options. Raf kinase inhibitor protein (RKIP), a suppressor of the MAPK signaling pathway, is downregulated in various cancers and acts as a metastasis suppressor. Our previous studies demonstrated low RKIP expression in GIST and its association with poor outcomes. This study aimed to expand on the previous findings and investigate the biological and therapeutic implications of RKIP loss on GIST. METHODS: To validate the RKIP prognostic significance, its expression was evaluated by immunohistochemistry in 142 bona fide GIST cases. The functional role of RKIP was evaluated in vitro, using the GIST-T1 cell line, which was knocked out for RKIP. The biological and therapeutic implications of RKIP were evaluated by invasion, migration, apoptosis, and 2D / 3D viability assays. Additionally, the transcriptome and proteome of RKIP knockout cells were determined by NanoString and mass spectrometry, respectively. RESULTS: Immunohistochemical analysis revealed the absence of RKIP in 25.3% of GIST cases, correlating with a tendency toward poor prognosis. Functional assays demonstrated that RKIP knockout increased GIST cells' invasion and migration potential by nearly 60%. Moreover, we found that RKIP knockout cells exhibited reduced responsiveness to Imatinib treatment and higher cellular viability in 2D and 3D in vitro models, as assessed by apoptosis-related protein expression. Through comprehensive genetic and proteomic profiling of RKIP knockout cells, we identified several putative RKIP-regulated proteins in GIST, such as COL3A1. CONCLUSIONS: Using a multidimensional integrative analysis, we identified, for the first time in GIST, molecules and pathways modulated by RKIP that may potentially drive metastasis and, consequently, poor prognosis in this disease.
RESUMO
The latex from Euphorbia tirucalli is used in Brazil as a folk medicine for several diseases, including cancer. Recently, we showed a cytotoxic activity of E. tirucalli euphol in a wide range of cancer cell lines. Moreover, we showed that euphol inhibits proliferation, motility and colony formation in pancreatic cancer cells, induces autophagy and sensitizes glioblastoma cells to temozolomide cytotoxicity. Herein, we report in vitro activity of three semi-synthetic ingenol compounds derived from E. tirucalli, IngA (ingenol-3-trans-cinnamate), IngB (ingenol-3-hexanoate) and IngC (ingenol-3-dodecanoate), against a large panel of human cancer cell lines. Antineoplastic effects of the three semi-synthetic compounds were assessed using MTS assays on 70 cancer cell lines from a wide array of solid tumors. Additionally, their antitumor potential was compared with known compounds of the same class, namely ingenol-3-angelate (Picato®) and ingenol 3,20-dibenzoate and in combination with standard chemotherapeutic agents. We observed that IngA, B, and C exhibited dose-dependent cytotoxic effects. Amongst the semi-synthetic compounds, IngC displayed the best activity across the tumor cell lines. In comparison with ingenol-3-angelate and ingenol 3,20-dibenzoate, IngC showed a mean of 6.6 and 3.6-fold higher efficacy, respectively, against esophageal cancer cell lines. Besides, IngC sensitized esophageal cancer cells to paclitaxel treatment. In conclusion, the semi-synthetic ingenol compounds, in particular, IngC, demonstrated a potent antitumor activity on all cancer cell lines evaluated. Although the underlying mechanisms of action of IngC are not elucidated, our results provide insights for further studies suggesting IngC as a putative therapy for cancer treatment.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Diterpenos/farmacologia , Euphorbia/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Antineoplásicos Fitogênicos/química , Diterpenos/química , Humanos , Células Tumorais CultivadasRESUMO
Glioblastoma (GBM) is the most frequent and aggressive type of brain tumor. There are limited therapeutic options for GBM so that new and effective agents are urgently needed. Euphol is a tetracyclic triterpene alcohol, and it is the main constituent of the sap of the medicinal plant Euphorbia tirucalli. We previously identified anti-cancer activity in euphol based on the cytotoxicity screening of 73 human cancer cells. We now expand the toxicological screening of the inhibitory effect and bioactivity of euphol using two additional glioma primary cultures. Euphol exposure showed similar cytotoxicity against primary glioma cultures compared to commercial glioma cells. Euphol has concentration-dependent cytotoxic effects on cancer cell lines, with more than a five-fold difference in the IC50 values in some cell lines. Euphol treatment had a higher selective cytotoxicity index (0.64-3.36) than temozolomide (0.11-1.13) and reduced both proliferation and cell motility. However, no effect was found on cell cycle distribution, invasion and colony formation. Importantly, the expression of the autophagy-associated protein LC3-II and acidic vesicular organelle formation were markedly increased, with Bafilomycin A1 potentiating cytotoxicity. Finally, euphol also exhibited antitumoral and antiangiogenic activity in vivo, using the chicken chorioallantoic membrane assay, with synergistic temozolomide interactions in most cell lines. In conclusion, euphol exerted in vitro and in vivo cytotoxicity against glioma cells, through several cancer pathways, including the activation of autophagy-associated cell death. These findings provide experimental support for further development of euphol as a novel therapeutic agent for GBM, either alone or in combination chemotherapy.
Assuntos
Autofagia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Euphorbia/química , Glioblastoma/patologia , Lanosterol/análogos & derivados , Temozolomida/farmacologia , Antineoplásicos Alquilantes/farmacologia , Apoptose , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Movimento Celular , Proliferação de Células , Glioblastoma/tratamento farmacológico , Humanos , Lanosterol/farmacologia , Células Tumorais CultivadasRESUMO
Cervical cancer is the third most commonly diagnosed tumor type and the fourth cause of cancer-related death in females. Therapeutic options for cervical cancer patients remain very limited. Annona crassiflora Mart. is used in traditional medicine as antimicrobial and antineoplastic agent. However, little is known about its antitumoral properties. In this study the antineoplastic effect of crude extract and derived partitions from A. crassiflora Mart in cervical cancer cell lines was evaluated. The crude extract significantly alters cell viability of cervical cancer cell lines as well as proliferation and migration, and induces cell death in SiHa cells. Yet, the combination of the crude extract with cisplatin leads to antagonistic effect. Importantly, the hexane partition derived from the crude extract presented cytotoxic effect both in vitro and in vivo, and initiates cell responses, such as DNA damage (H2AX activity), apoptosis via intrinsic pathway (cleavage of caspase-9, caspase-3, poly (ADP-ribose) polymerase (PARP) and mitochondrial membrane depolarization) and decreased p21 expression by ubiquitin proteasome pathway. Concluding, this work shows that hexane partition triggers several biological responses such as DNA damage and apoptosis, by intrinsic pathways, and was also able to promote a direct decrease in tumor perimeter in vivo providing a basis for further investigation on its antineoplastic activity on cervical cancer.
Assuntos
Annona , Antineoplásicos Fitogênicos/farmacologia , Extratos Vegetais/farmacologia , Neoplasias do Colo do Útero/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Embrião de Galinha , Dano ao DNA , Feminino , Hexanos/química , Humanos , Neovascularização Patológica/tratamento farmacológico , Folhas de Planta , Solventes/química , Neoplasias do Colo do Útero/patologiaRESUMO
The identification of signaling pathways that are involved in gliomagenesis is crucial for targeted therapy design. In this study we assessed the biological and therapeutic effect of ingenol-3-dodecanoate (IngC) on glioma. IngC exhibited dose-time-dependent cytotoxic effects on large panel of glioma cell lines (adult, pediatric cancer cells, and primary cultures), as well as, effectively reduced colonies formation. Nevertheless, it was not been able to attenuate cell migration, invasion, and promote apoptotic effects when administered alone. IngC exposure promoted S-phase arrest associated with p21CIP/WAF1 overexpression and regulated a broad range of signaling effectors related to survival and cell cycle regulation. Moreover, IngC led glioma cells to autophagy by LC3B-II accumulation and exhibited increased cytotoxic sensitivity when combined to a specific autophagic inhibitor, bafilomycin A1. In comparison with temozolomide, IngC showed a mean increase of 106-fold in efficacy, with no synergistic effect when they were both combined. When compared with a known compound of the same class, namely ingenol-3-angelate (I3A, Picato®), IngC showed a mean 9.46-fold higher efficacy. Furthermore, IngC acted as a potent inhibitor of protein kinase C (PKC) activity, an emerging therapeutic target in glioma cells, showing differential actions against various PKC isotypes. These findings identify IngC as a promising lead compound for the development of new cancer therapy and they may guide the search for additional PKC inhibitors.
Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/enzimologia , Diterpenos/farmacologia , Euphorbia/química , Glioma/enzimologia , Proteína Quinase C/antagonistas & inibidores , Antineoplásicos/química , Autofagia , Neoplasias Encefálicas/tratamento farmacológico , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Diterpenos/química , Ensaios de Seleção de Medicamentos Antitumorais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioma/tratamento farmacológico , Humanos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacosRESUMO
Glioblastoma (GBM) is one of the most glycolytic and angiogenic human tumors, characteristics that contribute to the poor prognosis associated with this type of tumor. A lactate shuttle has been described between tumor cells and endothelial cells (ECs), with the monocarboxylate transporters (MCTs) acting as important players in this tumor-EC communication. In this study, we aimed to understand how the tumor microenvironment modulates EC metabolism, and to characterize the role of MCTs in the glioma-brain EC crosstalk. Exposure of human brain microvascular ECs (HBMEC) to GBM cell-conditioned media increased the expression of MCT1, which corresponded to activation of oxidative metabolism and an increase in angiogenic capacity, as determined by increased proliferation, migration, and vessel assembly. Lactate depletion from the microenvironment or inhibition of lactate uptake in HBMEC induced an increase in lactate production and a decrease in proliferation, migration, and vessel assembly. Moreover, addition of lactate to HBMEC media promoted activation of AKT and AMPK pathways and increased expression in NFκB, HIF-1α, and the lactate receptor GPR81. Here, we demonstrate a role for MCT1 as a mediator of lactate signaling between glioma cells and brain ECs. Our results suggest that MCT1 can mediate EC metabolic reprograming, proliferation, and vessel sprouting in response to tumor signaling. Thus, targeting MCT1 in both tumor cells and brain EC may be a promising therapeutic strategy for the treatment of GBM.
Assuntos
Células Endoteliais/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Simportadores/metabolismo , Microambiente Tumoral , Western Blotting , Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Meios de Cultivo Condicionados/farmacologia , Células Endoteliais/efeitos dos fármacos , Glioma/irrigação sanguínea , Glioma/genética , Glioma/metabolismo , Humanos , Ácido Láctico/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Neovascularização Patológica/genética , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Simportadores/genéticaRESUMO
OBJECTIVE: Soft tissue sarcomas (STSs) are heterogeneous tumors displaying multiple and complex molecular abnormalities with no specific pattern. Despite current therapeutic advances, the patients with STS still have a poor outcome, which makes it necessary to find out new prognostic markers. The Raf kinase inhibitory protein (RKIP) has been associated with prognosis in several human neoplasms; however, its role in STS is unknown. METHODS: In the present study RKIP expression was assessed by immunohistochemistry in a series of 87 STSs, and its expression profile was associated with the patients' pathological parameters. RESULTS: We found that RKIP is expressed in the cytoplasm of the great majority of cases, and absent in only approximately 18% of cases (16/87). Importantly, we observed that loss of RKIP expression was associated with poor outcome, constituting an independent prognostic marker. CONCLUSION: This is the first study assessing RKIP expression levels in STS. We showed that loss of RKIP expression is present in a small subset of cases; however, its absence was associated with poor survival and may be a potential marker for STS prognosis.
Assuntos
Proteína de Ligação a Fosfatidiletanolamina/genética , Sarcoma/diagnóstico , Sarcoma/genética , Idoso , Biomarcadores Tumorais , Intervalo Livre de Doença , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Prognóstico , Sarcoma/patologia , Sarcoma/ultraestrutura , Análise de SobrevidaRESUMO
Receptor tyrosine kinase (RTK) targeted therapy has been explored for glioblastoma treatment. However, it is unclear which RTK inhibitors are the most effective and there are no predictive biomarkers available. We recently identified the RTK AXL as a putative target for the pan-RTK inhibitors cediranib and sunitinib, which are under clinical trials for glioblastoma patients. Here, we provide evidence that AXL activity can modulate sunitinib response in glioblastoma cell lines. We found that AXL knockdown conferred lower sensitivity to sunitinib by rescuing migratory defects and inhibiting apoptosis in cells expressing high AXL basal levels. Accordingly, overactivation of AXL by its ligand GAS6 rendered AXL positive glioblastoma cells more sensitive to sunitinib. AXL knockdown induced a cellular rewiring of several growth signaling pathways through activation of RTKs, such as EGFR, as well as intracellular pathways such as MAPK and AKT. The combination of sunitinib with a specific AKT inhibitor reverted the resistance of AXL-silenced cells to sunitinib. Together, our results suggest that sunitinib inhibits AXL and AXL activation status modulates therapy response of glioblastoma cells to sunitinib. Moreover, it indicates that combining sunitinib therapy with AKT pathway inhibitors could overcome sunitinib resistance.
Assuntos
Inibidores da Angiogênese/farmacologia , Indóis/farmacologia , Proteínas Proto-Oncogênicas/fisiologia , Pirróis/farmacologia , Receptores Proteína Tirosina Quinases/fisiologia , Linhagem Celular Tumoral , Movimento Celular , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Ativação Enzimática , Receptores ErbB/metabolismo , Técnicas de Silenciamento de Genes , Glioblastoma , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Transdução de Sinais , Sunitinibe , Receptor Tirosina Quinase AxlRESUMO
The gene encoding protein kinase WNK2 was recently identified to be silenced by promoter hypermethylation in gliomas and meningiomas, suggesting a tumour-suppressor role in these brain tumours. Following experimental depletion in cell lines, WNK2 was further found to control GTP-loading of Rac1, a signalling guanosine triphosphatase involved in cell migration and motility. Here we show that WNK2 promoter methylation also occurs in 17.5% (29 out of 166) of adult gliomas, whereas it is infrequent in its paediatric forms (1.6%; 1 out of 66). Re-expression of WNK2 in glioblastoma cells presenting WNK2 gene silencing reduced cell proliferation in vitro, tumour growth in vivo and also cell migration and invasion, an effect correlated with reduced activation of Rac1. In contrast, when endogenous WNK2 was depleted from glioblastoma cells with unmethylated WNK2 promoter, changes in cell morphology, an increase in invasion and activation of Rac1 were observed. Together, these results validate the WNK2 gene as a recurrent target for epigenetic silencing in glia-derived brain tumours and provide first mechanistic evidence for a tumour-suppressing role of WNK2 that is related to Rac1 signalling and tumour cell invasion and proliferation.
Assuntos
Neoplasias Encefálicas/genética , Metilação de DNA , Glioblastoma/genética , Invasividade Neoplásica/genética , Regiões Promotoras Genéticas , Proteínas Serina-Treonina Quinases/genética , Proteínas rac1 de Ligação ao GTP/fisiologia , Adulto , Neoplasias Encefálicas/patologia , Divisão Celular , Linhagem Celular Tumoral , Inativação Gênica , Glioblastoma/patologia , Humanos , Reação em Cadeia da PolimeraseRESUMO
Error in Figure [...].
RESUMO
Raf Kinase Inhibitor Protein (RKIP) is recognized as a bona fide tumor suppressor gene, and its diminished expression or loss is associated with the progression and poor prognosis of various solid tumors. It exerts multifaceted roles in carcinogenesis by modulating diverse intracellular signaling pathways, including those governed by HER receptors such as MAPK. Given the significance of HER receptor overexpression in numerous tumor types, we investigated the potential oncogenic relationship between RKIP and HER receptors in solid tumors. Through a comprehensive in silico analysis of 30 TCGA PanCancer Atlas studies encompassing solid tumors (10,719 samples), we uncovered compelling evidence of an inverse correlation between RKIP and EGFR expression in solid tumors observed in 25 out of 30 studies. Conversely, a predominantly positive association was noted for the other HER receptors (ERBB2, ERBB3, and ERBB4). In particular, cervical cancer (CC) emerged as a tumor type exhibiting a robust inverse association between RKIP and EGFR expression, a finding that was further validated in a cohort of 202 patient samples. Subsequent in vitro experiments involving pharmacological and genetic modulation of EGFR and RKIP showed that RKIP depletion led to significant upregulation of EGFR mRNA levels and induction of EGFR phosphorylation. Conversely, EGFR overactivation decreased RKIP expression in CC cell lines. Additionally, we identified a common molecular signature among patients depicting low RKIP and high EGFR expression and demonstrated the prognostic value of this inverse correlation in CC patients. In conclusion, our findings reveal an inverse association between RKIP and EGFR expression across various solid tumors, shedding new light on the underlying molecular mechanisms contributing to the aggressive phenotype associated with RKIP and EGFR in cervical cancer.
RESUMO
Neural injuries in cerebral malaria patients are a significant cause of morbidity and mortality. Nevertheless, a comprehensive research approach to study this issue is lacking, so herein we propose an in vitro system to study human cerebral malaria using cellular approaches. Our first goal was to establish a cellular system to identify the molecular alterations in human brain vasculature cells that resemble the blood-brain barrier (BBB) in cerebral malaria (CM). Through transcriptomic analysis, we characterized specific gene expression profiles in human brain microvascular endothelial cells (HBMEC) activated by the Plasmodium falciparum parasites. We also suggest potential new genes related to parasitic activation. Then, we studied its impact at brain level after Plasmodium falciparum endothelial activation to gain a deeper understanding of the physiological mechanisms underlying CM. For that, the impact of HBMEC-P. falciparum-activated secretomes was evaluated in human brain organoids. Our results support the reliability of in vitro cellular models developed to mimic CM in several aspects. These systems can be of extreme importance to investigate the factors (parasitological and host) influencing CM, contributing to a molecular understanding of pathogenesis, brain injury, and dysfunction.
Assuntos
Malária Cerebral , Humanos , Malária Cerebral/metabolismo , Malária Cerebral/parasitologia , Malária Cerebral/patologia , Células Endoteliais/metabolismo , Reprodutibilidade dos Testes , Encéfalo/patologia , Plasmodium falciparum , Organoides/metabolismoRESUMO
Monocarboxylate transporters (MCTs) have been described to play an important role in cancer, but to date there are no reports on the significance of MCT expression in gastrointestinal stromal tumors (GISTs). The aim of the present work was to assess the value of MCT expression, as well as co-expression with the MCT chaperone CD147 in GISTs and evaluate their clinical-pathological significance. We analyzed the immunohistochemical expression of MCT1, MCT2, MCT4 and CD147 in a series of 64 GISTs molecularly characterized for KIT, PDGFRA and BRAF mutations. MCT1, MCT2 and MCT4 were highly expressed in GISTs. CD147 expression was associated with mutated KIT (p = 0.039), as well as a progressive increase in Fletcher's Risk of Malignancy (p = 0.020). Importantly, co-expression of MCT1 with CD147 was associated with low patient's overall survival (p = 0.037). These findings suggest that co-expression of MCT1 with its chaperone CD147 is involved in GISTs aggressiveness, pointing to a contribution of cancer cell metabolic adaptations in GIST development and/or progression.
Assuntos
Basigina/metabolismo , Biomarcadores Tumorais/metabolismo , Tumores do Estroma Gastrointestinal/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Simportadores/metabolismo , Tumores do Estroma Gastrointestinal/genética , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Mutação/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas c-kit/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Análise de SobrevidaRESUMO
Imatinib therapy has undoubtedly contributed to the treatment of metastatic gastrointestinal stromal (GIST) tumors that were previously untreatable. However, disease progression during treatment with tyrosine kinase inhibitors remains an issue in clinical practice not fully explained by KIT and PDGFRA mutation status. We investigated the role of three important signaling molecules (insulin-like growth factor 1 receptor [IGF1R], protein kinase C-θ [PKCθ], and Raf kinase inhibitor protein [RKIP]) that have been implicated in GIST pathogenesis as potential biomarkers for prediction of response to imatinib treatment. We retrospectively reviewed 76 patients with metastatic GIST submitted to imatinib treatment between 2002 and 2007, and analyzed 63 of them. Insulin-like growth factor 1, total PKCθ, phosphorylated PKCθ, and RKIP immunohistochemical expression were correlated with objective response to imatinib treatment and progression-free and overall survival. Median follow-up was 31.2 mo (95% confidence interval, 26.3-36.1 mo). There was a statistically significant association between IGF1R expression and type of response to imatinib treatment (P = 0.05)-that is, higher IGF1R expression was related to lower objective response. However, IGF1R higher expression did not affect progression-free and overall survival. Insulin-like growth factor 1, but not PKCθ and RKIP, emerges as a potential biomarker for prediction of response to imatinib treatment in metastatic GISTs. Validation studies are warranted.
Assuntos
Neoplasias Gastrointestinais/tratamento farmacológico , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Piperazinas/uso terapêutico , Pirimidinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Adulto , Idoso , Antineoplásicos/uso terapêutico , Benzamidas , Feminino , Seguimentos , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/metabolismo , Neoplasias Gastrointestinais/patologia , Tumores do Estroma Gastrointestinal/genética , Tumores do Estroma Gastrointestinal/metabolismo , Tumores do Estroma Gastrointestinal/secundário , Humanos , Mesilato de Imatinib , Masculino , Pessoa de Meia-Idade , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Valor Preditivo dos Testes , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas c-kit/genética , Receptor Cross-Talk/efeitos dos fármacos , Receptor Cross-Talk/fisiologia , Receptor IGF Tipo 1/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Estudos Retrospectivos , Transdução de Sinais/fisiologiaRESUMO
Cetuximab is the sole anti-EGFR monoclonal antibody that is FDA approved to treat head and neck squamous cell carcinoma (HNSCC). However, no predictive biomarkers of cetuximab response are known for HNSCC. Herein, we address the molecular mechanisms underlying cetuximab resistance in an in vitro model. We established a cetuximab resistant model (FaDu), using increased cetuximab concentrations for more than eight months. The resistance and parental cells were evaluated for cell viability and functional assays. Protein expression was analyzed by Western blot and human cell surface panel by lyoplate. The mutational profile and copy number alterations (CNA) were analyzed using whole-exome sequencing (WES) and the NanoString platform. FaDu resistant clones exhibited at least two-fold higher IC50 compared to the parental cell line. WES showed relevant mutations in several cancer-related genes, and the comparative mRNA expression analysis showed 36 differentially expressed genes associated with EGFR tyrosine kinase inhibitors resistance, RAS, MAPK, and mTOR signaling. Importantly, we observed that overexpression of KRAS, RhoA, and CD44 was associated with cetuximab resistance. Protein analysis revealed EGFR phosphorylation inhibition and mTOR increase in resistant cells. Moreover, the resistant cell line demonstrated an aggressive phenotype with a significant increase in adhesion, the number of colonies, and migration rates. Overall, we identified several molecular alterations in the cetuximab resistant cell line that may constitute novel biomarkers of cetuximab response such as mTOR and RhoA overexpression. These findings indicate new strategies to overcome anti-EGFR resistance in HNSCC.
Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Cetuximab/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Antineoplásicos Imunológicos/farmacologia , Linhagem Celular Tumoral , Cetuximab/farmacologia , Humanos , Transdução de SinaisRESUMO
Tumor-infiltrating lymphocytes include heterogeneous populations of T lymphocytes that play crucial roles in the tumor immune response; importantly, their presence in the tumor tissue may predict clinical outcomes. Therefore, we herein studied the prognostic significance of the presence and location of CD3+, CD8+, and FoxP3+ T lymphocytes in colorectal cancer samples. In the intratumor analysis, our data did not reveal any association between lymphocyte infiltrations with clinical or pathological data. However, in the tumor margins, we found that the presence of high infiltrations of CD3+, CD8+, or FoxP3+ T lymphocytes were associated with TNM stages I-II (p = 0.021, p = 0.022, and p = 0.012, respectively) and absence of lymph node metastases (p = 0.010, p = 0.003, and p = 0.004, respectively). Despite these associations with good prognostic indicators, we were not able to find any statistically significant alterations in the overall survival of the patients, even though high infiltrations of FoxP3+ T lymphocytes in the tumor margins resulted in an increased overall survival of 14 months. Taken together, these data show that the presence of CD3+, CD8+, or FoxP3+T lymphocyte infiltrates in the tumor margins are associated with the pathogenesis of CRC, but only high Foxp3+ T lymphocyte infiltrations in the tumor invasive margins are inclined to indicate favorable prognosis.
RESUMO
Neuroendocrine neoplasms (NENs) are the most common tumor of the appendix and have an excellent prognosis. Appendiceal tumors diagnosed between 1989 and 2019 were reviewed, and clinical data were collected from patient files. Part of the series was immuno-profiled for markers related to cell cycle proliferation and/or senescence-type, apoptotic, and metastatic potential. Appendix NENs were detected in 74 patients, with 0.47% of incidence per appendectomy. The median age of the patients was 21.5 years, with two age peaks of incidence at 17.0 and 55.2 years. The median tumors size was 5.8 mm, and most were smaller than 10 mm. Lymphovascular and perineural invasion, as well as necrosis, was associated with larger tumor size. G1 tumors composed 96.0% of the cohort. The presence of moderate/strong p16 and the absent/low Bcl-2 expression was frequently observed and associated with a smaller size. This study represents one of the largest cohorts and with a long follow-up. For tumors smaller than 10 mm appendicectomy was sufficient as a curative procedure, as revealed by the good outcome. This series presented a 100% disease-free survival. The indolent phenotype of appendix NENs is supported by the expression of markers that point towards a strong inhibition of cell replication and growth inhibition.
RESUMO
Autophagy is a cell-survival pathway with dual role in tumorigenesis, promoting either tumor survival or tumor death. WNK2 gene, a member of the WNK (with no lysine (K)) subfamily, acts as a tumor suppressor gene in gliomas, regulating cell migration and invasion; however, its role in autophagy process is poorly explored. The WNK2-methylated human glioblastoma cell line A172 WT (wild type) was compared to transfected clones A172 EV (empty vector), and A172 WNK2 (WNK2 overexpression) for the evaluation of autophagy using an inhibitor (bafilomycin A1-baf A1) and an inducer (everolimus) of autophagic flux. Western blot and immunofluorescence approaches were used to monitor autophagic markers, LC3A/B and SQSTM1/p62. A172 WNK2 cells presented a significant decrease in LC3B and p62 protein levels, and in LC3A/B ratio when compared with control cells, after treatment with baf A1 + everolimus, suggesting that WNK2 overexpression inhibits the autophagic flux in gliomas. The mTOR pathway was also evaluated under the same conditions, and the observed results suggest that the inhibition of autophagy mediated by WNK2 occurs through a mTOR-independent pathway. In conclusion, the evaluation of the autophagic process demonstrated that WNK2 inhibits the autophagic flux in glioblastoma cell line.
Assuntos
Autofagia/efeitos dos fármacos , Autofagia/genética , Everolimo/farmacologia , Glioblastoma/metabolismo , Macrolídeos/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Glioblastoma/patologia , Humanos , Plasmídeos/genética , Proteínas Serina-Treonina Quinases/genética , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , TransfecçãoRESUMO
AIMS: Gastrointestinal stromal tumours (GISTs) are commonly driven by oncogenic mutations in KIT and PDGFRA. However, 10-40% of these patients are wild-type for these genes. The prognostic significance of wild-type GISTs is controversial, and they rarely respond to imatinib. The aim of this study was to elucidate the molecular lesions underlying wild-type GISTs tumorigenesis. METHODS AND RESULTS: Twenty-nine KIT and PDGFRA wild-type GISTs were re-assessed for the presence of 'cryptic'KIT exon 11 duplications. Using a specific polymerase chain reaction assay, three previously undetected mutations were identified. In the remaining 26 wild-type GISTs, KIT, stem cell factor (SCF), phospho-KIT and phospho-ERK expression was evaluated by immunohistochemistry. Samples were screened for gain-of-function mutations in the mitogen-activated protein kinase (MAPK) cascade. KIT and SCF co-expression associated with KIT activation was observed in approximately 30% of cases. Furthermore, phospho-ERK expression showed that MAPK is activated in approximately 30% of cases. None of RAS family (H-, K- and N-RAS) oncogenes exhibited activating mutations, whereas BRAF mutations were found in approximately 4% of cases. CONCLUSIONS: In the absence of RAS mutations, MAPK could be activated through SCF/KIT autocrine/paracrine mechanisms and/or mutated BRAF in a subset of KIT/PDGFRA wild-type GISTs.