Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Psychiatry ; 28(11): 4902-4914, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37779111

RESUMO

In the field of neurodegenerative diseases, especially sporadic Parkinson's disease (sPD) with dementia (sPDD), the question of how the disease starts and spreads in the brain remains central. While prion-like proteins have been designated as a culprit, recent studies suggest the involvement of additional factors. We found that oxidative stress, damaged DNA binding, cytosolic DNA sensing, and Toll-Like Receptor (TLR)4/9 activation pathways are strongly associated with the sPDD transcriptome, which has dysregulated type I Interferon (IFN) signaling. In sPD patients, we confirmed deletions of mitochondrial (mt)DNA in the medial frontal gyrus, suggesting a potential role of damaged mtDNA in the disease pathophysiology. To explore its contribution to pathology, we used spontaneous models of sPDD caused by deletion of type I IFN signaling (Ifnb-/-/Ifnar-/- mice). We found that the lack of neuronal IFNß/IFNAR leads to oxidization, mutation, and deletion in mtDNA, which is subsequently released outside the neurons. Injecting damaged mtDNA into mouse brain induced PDD-like behavioral symptoms, including neuropsychiatric, motor, and cognitive impairments. Furthermore, it caused neurodegeneration in brain regions distant from the injection site, suggesting that damaged mtDNA triggers spread of PDD characteristics in an "infectious-like" manner. We also discovered that the mechanism through which damaged mtDNA causes pathology in healthy neurons is independent of Cyclic GMP-AMP synthase and IFNß/IFNAR, but rather involves the dual activation of TLR9/4 pathways, resulting in increased oxidative stress and neuronal cell death, respectively. Our proteomic analysis of extracellular vesicles containing damaged mtDNA identified the TLR4 activator, Ribosomal Protein S3 as a key protein involved in recognizing and extruding damaged mtDNA. These findings might shed light on new molecular pathways through which damaged mtDNA initiates and spreads PD-like disease, potentially opening new avenues for therapeutic interventions or disease monitoring.


Assuntos
DNA Mitocondrial , Doença de Parkinson , Humanos , Camundongos , Animais , DNA Mitocondrial/genética , Doença de Parkinson/genética , Doença de Parkinson/patologia , Proteômica , Mitocôndrias/metabolismo , Neurônios/metabolismo
2.
Sci Adv ; 9(51): eadj8442, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38117896

RESUMO

Forkhead box A1 (FoxA1)+ regulatory T cells (Tregs) exhibit distinct characteristics from FoxP3+ Tregs while equally effective in exerting anti-inflammatory properties. The role of FoxP3+ Tregs in vivo has been challenged, motivating a better understanding of other Tregs in modulating hyperactive immune responses. FoxA1+ Tregs are generated on activation of the transcription factor FoxA1 by interferon-ß (IFNß), an anti-inflammatory cytokine. T cell activation, expansion, and function hinge on metabolic adaptability. We demonstrated that IFNß promotes a metabolic rearrangement of FoxA1+ Tregs by enhancing oxidative phosphorylation and mitochondria clearance by mitophagy. In response to IFNß, FoxA1 induces a specific transcription variant of adenosine 5'-monophosphate-activated protein kinase (AMPK) γ2 subunit, PRKAG2.2. This leads to the activation of AMPK signaling, thereby enhancing mitochondrial respiration and mitophagy by ULK1-BNIP3. This IFNß-FoxA1-PRKAG2.2-BNIP3 axis is pivotal for their suppressive function. The involvement of PRKAG2.2 in FoxA1+ Treg, not FoxP3+ Treg differentiation, underscores the metabolic differences between Treg populations and suggests potential therapeutic targets for autoimmune diseases.


Assuntos
Proteínas Quinases Ativadas por AMP , Linfócitos T Reguladores , Proteínas Quinases Ativadas por AMP/metabolismo , Regulação da Expressão Gênica , Diferenciação Celular , Anti-Inflamatórios/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa