Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(W1): W108-W114, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35524558

RESUMO

Computational models have great potential to accelerate bioscience, bioengineering, and medicine. However, it remains challenging to reproduce and reuse simulations, in part, because the numerous formats and methods for simulating various subsystems and scales remain siloed by different software tools. For example, each tool must be executed through a distinct interface. To help investigators find and use simulation tools, we developed BioSimulators (https://biosimulators.org), a central registry of the capabilities of simulation tools and consistent Python, command-line and containerized interfaces to each version of each tool. The foundation of BioSimulators is standards, such as CellML, SBML, SED-ML and the COMBINE archive format, and validation tools for simulation projects and simulation tools that ensure these standards are used consistently. To help modelers find tools for particular projects, we have also used the registry to develop recommendation services. We anticipate that BioSimulators will help modelers exchange, reproduce, and combine simulations.


Assuntos
Simulação por Computador , Software , Humanos , Bioengenharia , Modelos Biológicos , Sistema de Registros , Pesquisadores
2.
Nucleic Acids Res ; 49(W1): W597-W602, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34019658

RESUMO

Comprehensive, predictive computational models have significant potential for science, bioengineering, and medicine. One promising way to achieve more predictive models is to combine submodels of multiple subsystems. To capture the multiple scales of biology, these submodels will likely require multiple modeling frameworks and simulation algorithms. Several community resources are already available for working with many of these frameworks and algorithms. However, the variety and sheer number of these resources make it challenging to find and use appropriate tools for each model, especially for novice modelers and experimentalists. To make these resources easier to use, we developed RunBioSimulations (https://run.biosimulations.org), a single web application for executing a broad range of models. RunBioSimulations leverages community resources, including BioSimulators, a new open registry of simulation tools. These resources currently enable RunBioSimulations to execute nine frameworks and 44 algorithms, and they make RunBioSimulations extensible to additional frameworks and algorithms. RunBioSimulations also provides features for sharing simulations and interactively visualizing their results. We anticipate that RunBioSimulations will foster reproducibility, stimulate collaboration, and ultimately facilitate the creation of more predictive models.


Assuntos
Simulação por Computador , Modelos Biológicos , Software , Algoritmos , Biologia Computacional , Internet
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa