RESUMO
INTRODUCTION: Recent introductions of disease-modifying treatments for Alzheimer's disease have re-invigorated the cause of early dementia detection. Cognitive "paper and pencil" tests represent the bedrock of clinical assessment, because they are cheap, easy to perform, and do not require brain imaging or biological testing. Cognitive tests vary greatly in duration, complexity, sociolinguistic biases, probed cognitive domains, and their specificity and sensitivity of detecting cognitive impairment (CI). Consequently, an ecologically valid head-to-head comparison seems essential for evidence-based dementia screening. METHOD: We compared five tests: Montreal cognitive assessment (MoCA), Alzheimer's disease assessment scale-cognitive subscale (ADAS), Addenbrooke's cognitive examination (ACE-III), euro-coin handling test (Eurotest), and image identification test (Phototest) on a large sample of seniors (N = 456, 77.9 ± 8 years, 71% females). Their specificity and sensitivity were estimated in a novel way by contrasting each test's outcome to the majority outcome across the remaining tests (comparative specificity and sensitivity calculation [CSSC]). This obviates the need for an a priori gold standard such as a clinically clear-cut sample of dementia/MCI/controls. We posit that the CSSC results in a more ecologically valid estimation of clinical performance while precluding biases resulting from different dementia/MCI diagnostic criteria and the proficiency in detecting these conditions. RESULTS: There exists a stark trade-off between behavioral test specificity and sensitivity. The test with the highest specificity had the lowest sensitivity, and vice versa. The comparative specificities and sensitivities were, respectively: Phototest (97%, 47%), Eurotest (94%, 55%), ADAS (90%, 68%), ACE-III (72%, 77%), MoCA (55%, 95%). CONCLUSION: Assuming a CI prevalence of 10%, the shortest (â¼3 min) and the simplest instrument, the Phototest, was shown to have the best overall performance (accuracy 92%, PPV 66%, NPV 94%).
RESUMO
Postural instability and freezing of gait are the most debilitating dopamine-refractory motor impairments in advanced stages of Parkinson's disease because of increased risk of falls and poorer quality of life. Recent findings suggest an inability to efficaciously utilize vestibular information during static posturography among people with Parkinson's disease who exhibit freezing of gait, with associated changes in cholinergic system integrity as assessed by vesicular acetylcholine transporter PET. There is a lack of adequate understanding of how postural control varies as a function of available sensory information in patients with Parkinson's disease with freezing of gait. The goal of this cross-sectional study was to examine cerebral cholinergic system changes that associate with inter-sensory postural control processing features as assessed by dynamic computerized posturography and acetylcholinesterase PET. Seventy-five participants with Parkinson's disease, 16 of whom exhibited freezing of gait, underwent computerized posturography on the NeuroCom© Equitest sensory organization test platform, striatal dopamine, and acetylcholinesterase PET scanning. Findings demonstrated that patients with Parkinson's disease with freezing of gait have greater difficulty maintaining balance in the absence of reliable proprioceptive cues as compared to those without freezing of gait [ß = 0.28 (0.021, 0.54), P = 0.034], an effect that was independent of disease severity [ß = 0.16 (0.062, 0.26), P < 0.01] and age [ß = 0.092 (-0.005, 0.19), P = 0.062]. Exploratory voxel-based analysis revealed an association between postural control and right hemispheric cholinergic network related to visual-vestibular integration and self-motion perception. High anti-cholinergic burden predicted postural control impairment in a manner dependent on right hemispheric cortical cholinergic integrity [ß = 0.34 (0.065, 0.61), P < 0.01]. Our findings advance the perspective that cortical cholinergic system might play a role in supporting postural control after nigro-striatal dopaminergic losses in Parkinson's disease. Failure of cortex-dependent visual-vestibular integration may impair detection of postural instability in absence of reliable proprioceptive cues. Better understanding of how the cholinergic system plays a role in this process may augur novel treatments and therapeutic interventions to ameliorate debilitating symptoms in patients with advanced Parkinson's disease.
Assuntos
Transtornos Neurológicos da Marcha , Doença de Parkinson , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/tratamento farmacológico , Acetilcolinesterase , Dopamina , Estudos Transversais , Qualidade de Vida , Equilíbrio PosturalRESUMO
Motor imagery (MI) is fundamentally linked to the motor system. It improves motor learning and optimizes motor actions without physical execution, highlighting its unique role in rehabilitation programs and motor performance. Understanding the developmental trajectories of MI and the factors influencing its variability across ages could enable more effective, age-specific strategies for pediatric rehabilitation. This study assessed 65 children aged 7 to 14 years at two time points 1 year apart. MI ability was assessed using the Movement Imagery Questionnaire for Children, and physical fitness was evaluated using the SLOfit testing battery. Among the three perspectives assessed; internal visual imagery (IVI), external visual imagery (EVI), and kinesthetic imagery (KI), KI was unique in not correlating with age at both time points. The development of MI perspectives varied between athletes and non-athletes, with non-athletes showing a decline in IVI compared with athletes. This differential was further evidenced by significant differences in KI between the groups at the second assessment, with a similar trend observed at the first assessment. Of the physical fitness tests, only the 600-m run correlated consistently with KI at both assessments. Our findings suggest that regular participation in sports significantly affects KI performance, highlighting the importance of sports participation for the development of MI abilities in children. Future research should examine additional assessment points in different age groups and sport experience to better understand the development of MI and its potential implications for pediatric rehabilitation.
RESUMO
Brain-computer interfaces (BCIs) are promising tools for motor neurorehabilitation. Achieving a balance between classification accuracy and system responsiveness is crucial for real-time applications. This study aimed to assess how the duration of time windows affects performance, specifically classification accuracy and the false positive rate, to optimize the temporal parameters of MI-BCI systems. We investigated the impact of time window duration on classification accuracy and false positive rate, employing Linear Discriminant Analysis (LDA), Multilayer Perceptron (MLP), and Support Vector Machine (SVM) on data acquired from six post-stroke patients and on the external BCI IVa dataset. EEG signals were recorded and processed using the Common Spatial Patterns (CSP) algorithm for feature extraction. Our results indicate that longer time windows generally enhance classification accuracy and reduce false positives across all classifiers, with LDA performing the best. However, to maintain the real-time responsiveness, crucial for practical applications, a balance must be struck. The results suggest an optimal time window of 1-2 s, offering a trade-off between classification performance and excessive delay to guarantee the system responsiveness. These findings underscore the importance of temporal optimization in MI-BCI systems to improve usability in real rehabilitation scenarios.
Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Acidente Vascular Cerebral , Máquina de Vetores de Suporte , Humanos , Eletroencefalografia/métodos , Acidente Vascular Cerebral/fisiopatologia , Masculino , Feminino , Algoritmos , Pessoa de Meia-Idade , Reabilitação do Acidente Vascular Cerebral/métodos , Idoso , Análise Discriminante , Fatores de TempoRESUMO
BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) affects the cardiovascular system. The current study investigated changes in heart rate (HR), blood pressure (BP), pulse wave velocity (PWV), and microcirculation in patients recovering from Coronavirus disease 2019 (COVID-19) infection. METHODOLOGY: Out of 43 initially contacted COVID-19 patients, 35 (30 males, 5 females; age: 60 ± 10 years; and body mass index (BMI): 31.8 ± 4.9) participated in this study. Participants were seen on two occasions after hospital discharge; the baseline measurements were collected, either on the day of hospital discharge if a negative PCR test was obtained, or on the 10th day after hospitalization if the PCR test was positive. The second measurements were done 60 days after hospitalization. The vascular measurements were performed using the VICORDER® device and a retinal blood vessel image analysis. RESULTS: A significant increase in systolic BP (SBP) (from 142 mmHg, SD: 15, to 150 mmHg, SD: 19, p = 0.041), reduction in HR (from 76 bpm, SD: 15, to 69 bpm, SD: 11, p = 0.001), and narrower central retinal vein equivalent (CRVE) (from 240.94 µm, SD: 16.05, to 198.05 µm, SD: 17.36, p = 0.013) were found. Furthermore, the trends of increasing PWV (from 11 m/s, SD: 3, to 12 m/s, SD: 3, p = 0.095) and decreasing CRAE (from 138.87 µm, SD: 12.19, to 136.77 µm, SD: 13.19, p = 0.068) were recorded. CONCLUSION: The present study investigated cardiovascular changes following COVID-19 infection at two-time points after hospital discharge (baseline measurements and 60 days post-hospitalization). Significant changes were found in systolic blood pressure, heart rate, and microvasculature indicating that vascular adaptations may be ongoing even weeks after hospitalization from COVID-19 infection. Future studies could involve conducting additional interim assessments during the active infection and post-infection periods.
Assuntos
COVID-19 , Hipertensão , Rigidez Vascular , Masculino , Feminino , Humanos , Pessoa de Meia-Idade , Idoso , Projetos Piloto , Análise de Onda de Pulso , Microcirculação , Rigidez Vascular/fisiologia , SARS-CoV-2 , Pressão Sanguínea/fisiologiaRESUMO
BACKGROUD: Sarcopenia is a common skeletal muscle syndrome that is common in older adults but can be mitigated by adequate and regular physical activity. The development and severity of sarcopenia is favored by several factors, the most influential of which are a sedentary lifestyle and physical inactivity. The aim of this observational longitudinal cohort study was to evaluate changes in sarcopenia parameters, based on the EWGSOP2 definition in a population of active older adults after eight years. It was hypothesized that selected active older adults would perform better on sarcopenia tests than the average population. METHODS: The 52 active older adults (22 men and 30 women, mean age: 68.4 ± 5.6 years at the time of their first evaluation) participated in the study at two time points eight-years apart. Three sarcopenia parameters were assessed at both time points: Muscle strength (handgrip test), skeletal muscle mass index, and physical performance (gait speed), these parameters were used to diagnose sarcop0enia according to the EWGSOP2 definition. Additional motor tests were also performed at follow-up measurements to assess participants' overall fitness. Participants self-reported physical activity and sedentary behavior using General Physical Activity Questionnaire at baseline and at follow-up measurements. RESULTS: In the first measurements we did not detect signs of sarcopenia in any individual, but after 8 years, we detected signs of sarcopenia in 7 participants. After eight years, we detected decline in ; muscle strength (-10.2%; p < .001), muscle mass index (-5.4%; p < .001), and physical performance measured with gait speed (-28.6%; p < .001). Similarly, self-reported physical activity and sedentary behavior declined, too (-25.0%; p = .030 and - 48.5%; p < .001, respectively). CONCLUSIONS: Despite expected lower scores on tests of sarcopenia parameters due to age-related decline, participants performed better on motor tests than reported in similar studies. Nevertheless, the prevalence of sarcopenia was consistent with most of the published literature. TRIAL REGISTRATION: The clinical trial protocol was registered on ClinicalTrials.gov, identifier: NCT04899531.
Assuntos
Sarcopenia , Masculino , Humanos , Feminino , Idoso , Pessoa de Meia-Idade , Sarcopenia/diagnóstico , Sarcopenia/epidemiologia , Estudos Longitudinais , Força da Mão/fisiologia , Força Muscular , Músculo Esquelético , PrevalênciaRESUMO
Space analogs, such as bed rest, are used to reproduce microgravity-induced morphological and physiological changes and can be used as clinical models of prolonged inactivity. Nevertheless, nonuniform decreases in muscle mass and function have been frequently reported, and peripheral nerve adaptations have been poorly studied, although some of these mechanisms may be explained. Ten young healthy males (18-33 yr) underwent 10 days of horizontal bed rest. Peripheral neurophysiological assessments were performed bilaterally for the dominant (DL) and nondominant upper and lower limbs (N-DL) on the 1st and 10th day of bed rest, including ultrasound of the median, deep peroneal nerve (DPN), and common fibular nerve (CFN) , as well as a complete nerve conduction study (NCS) of the upper and lower limbs. Consistently, reduced F waves, suggesting peripheral nerve dysfunction, of both the peroneal (DL: P = 0.005, N-DL: P = 0.013) and tibial nerves (DL: P = 0.037, N-DL: P = 0.005) were found bilaterally, whereas no changes were observed in nerve ultrasound or other parameters of the NCS of both the upper and lower limbs. In these young healthy males, only the F waves, known to respond to postural changes, were significantly affected by short-term bed rest. These preliminary results suggest that during simulated microgravity, most changes occur at the muscle or central nervous system level. Since the assessment of F waves is common in clinical neurophysiological examinations, caution should be used when testing individuals after prolonged immobility.
Assuntos
Repouso em Cama , Extremidades/inervação , Sistema Nervoso Periférico/fisiologia , Simulação de Ausência de Peso , Adaptação Fisiológica , Adolescente , Adulto , Voluntários Saudáveis , Humanos , Imageamento por Ressonância Magnética , Masculino , Condução Nervosa , Exame Neurológico , Sistema Nervoso Periférico/diagnóstico por imagem , Decúbito Dorsal , Fatores de Tempo , Ultrassonografia , Adulto JovemRESUMO
BACKGROUND: Physical inactivity is prevalent in older adults with type 2 diabetes mellitus (T2DM) and may exacerbate their clinical symptoms. The aim of this study was to examine the feasibility of 4-h regular versus more dynamic standing sessions while performing routine desktop activities as a non-exercise physical activity intervention in older adults with T2DM to increase non-exercise activity. METHODS: Twelve older adult patients with T2DM (3 female; age 71 ± 4 years; Body mass index 34 ± 5 kg/m2) completed three sessions (baseline sitting followed by "static" or "dynamic" desktop standing sessions). Participants stood behind a regular height-adjustable desk in the "static" standing session. An upright dynamic standing desk, which provides cues to make small weight-shifting movements, was used for the "dynamic" standing session. Oxygen consumption, cognitive performance, as well as net standing duration, total movement activity, and musculoskeletal discomfort were assessed during all three sessions. RESULTS: All participants were able to complete all sessions. Oxygen consumption and overall movements progressively increased from sitting to static and dynamic standing, respectively (p < 0.001). The duration of breaks during standing (p = 0.024) and rate of total musculoskeletal discomfort development (p = 0.043) were lower in the dynamic standing compared to static standing sessions. There was no evidence of executive cognitive worsening during either standing session compared to sitting. CONCLUSIONS: Prolonged 4-h standing as a simple non-exercise physical intervention is feasible in older adults with T2DM and may have metabolic (oxygen consumption) benefits. Increasing movement during desktop standing may offer incremental benefits compared to regular standing. Prolonged desktop standing might provide an effective intervention in T2DM older participants to target sedentariness. TRIAL REGISTRATION: ClinicalTrials.gov (NCT04410055), retrospectively registered May 27, 2020.
Assuntos
Diabetes Mellitus Tipo 2 , Postura Sentada , Idoso , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/terapia , Estudos de Viabilidade , Feminino , Humanos , Comportamento Sedentário , Posição OrtostáticaRESUMO
The purpose of this study was to create a valid and reliable assessment scale for the evaluation of three basic tennis strokes (forehand, backhand, serve) for 6-12-year-old tennis players, named the Tennis Rating Score for Children (TRSC). Altogether 60 players (21: forehand, 22: backhand, 17: serve) were video recorded (30 frames per second) while performing three main tennis strokes and later evaluated using the TRSC by five tennis trainers at Day 1 and Day 7. Agreement between days and raters was examined using the intraclass correlation coefficients (ICC). A Pearson's correlation was calculated to determine convergent validity (score related to participant's level of experience). The reliability between raters was very high for all three main strokes (ICCFOREHAND = 0.874; ICCBACKHAND = 0.877; ICCSERVE = 0.877). The intra-rater test-retests ICCs were also very high (ICCFOREHAND = 0.885; ICCBACKHAND = 0.891; ICCSERVE = 0.887). A large (rFOREHAND = 0.660) and very large (rBACKHAND = 0.730; rSERVE = 0.772) Pearson's correlations were found between all the ratings and the level of experience. The TRSC is shown to be highly reliable and valid when assessing technical skills in novice players, when compared to actual assessment from coaching experts; this tool may be helpful for tennis coaches to make a more objective diagnostic of the technical level of young tennis players.
Assuntos
Destreza Motora/fisiologia , Análise e Desempenho de Tarefas , Tênis/fisiologia , Fenômenos Biomecânicos , Criança , Humanos , Reprodutibilidade dos Testes , Gravação em VídeoRESUMO
This study aimed at determining whether the combination of action observation and motor imagery (AO + MI) of locomotor tasks could positively affect rehabilitation outcome after hip replacement surgery. Of initially 405 screened participants, 21 were randomly split into intervention group (N = 10; mean age = 64 y; AO + MI of locomotor tasks: 30 min/day in the hospital, then 3×/week in their homes for two months) and control group (N = 11, mean age = 63 y, active controls). The functional outcomes (Timed Up and Go, TUG; Four Step Square Test, FSST; and single- and dual-task gait and postural control) were measured before (PRE) and 2 months after surgery (POST). Significant interactions indicated better rehabilitation outcome for the intervention group as compared to the control group: at POST, the intervention group revealed faster TUG (p = 0.042), FSST (p = 0.004), and dual-task fast-paced gait speed (p = 0.022), reduced swing-time variability (p = 0.005), and enhanced cognitive performance during dual tasks while walking or balancing (p < 0.05). In contrast, no changes were observed for body sway parameters (p ≥ 0.229). These results demonstrate that AO + MI is efficient to improve motor-cognitive performance after hip surgery. Moreover, only parameters associated with locomotor activities improved whereas balance skills that were not part of the AO + MI intervention were not affected, demonstrating the specificity of training intervention. Overall, utilizing AO + MI during rehabilitation is advised, especially when physical practice is limited.
Assuntos
Artroplastia de Quadril/reabilitação , Imaginação , Locomoção , Percepção de Movimento , Desempenho Psicomotor , Idoso , Terapia Combinada/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Resultado do TratamentoRESUMO
Phase-amplitude coupling (PAC) describes the interaction of two separate frequencies in which the lower frequency phase acts as a carrier frequency of the higher frequency amplitude. It is a means of carrying integrated streams of information between micro- and macroscale systems in the brain, allowing for coordinated activity of separate brain regions. A beta-gamma PAC increase over the sensorimotor cortex has been observed consistently in people with Parkinson's disease (PD). Its cause is attributed to neural entrainment in the basal ganglia, caused by pathological degeneration characteristic of PD. Disruptions in this phenomenon in PD patients have been observed in the resting state as well as during movement recordings and have reliably distinguished patients from healthy participants. The changes can be detected non-invasively with the electroencephalogram (EEG). They correspond to the severity of the motor symptoms and the medication status of people with PD. Furthermore, a medication-induced decrease in PAC in PD correlates with the alleviation of motor symptoms measured by assessment scales. A beta-gamma PAC increase has, therefore, been explored as a possible means of quantifying motor pathology in PD. The application of this parameter to closed-loop deep brain stimulation could serve as a self-adaptation measure of such treatment, responding to fluctuations of motor symptom severity in PD. Furthermore, phase-dependent stimulation provides a new precise method for modulating PAC increases in the cortex. This review offers a comprehensive synthesis of the current EEG-based evidence on PAC fluctuations in PD, explores the potential practical utility of this biomarker, and provides recommendations for future research.
RESUMO
PURPOSE: Several mechanisms have been proposed to explain how mental fatigue degrades sport performance. In terms of endurance performance, a role for an increased perceived exertion has been demonstrated. Using electroencephalography and, more specifically, the movement-related cortical potential (MRCP), the present study explored the neural mechanisms that could underlie the mental fatigue-associated increase in perceived exertion. METHODS: Fourteen participants (age, 23 ± 2 yr; 5 women, 9 men) performed one familiarization and two experimental trials in a randomized, blinded, crossover study design. Participants had to complete a submaximal leg extension task after a mentally fatiguing task (EXP; individualized 60-min Stroop task) or control task (CON; documentary). The leg extension task consisted of performing 100 extensions at 35% of 1 repetition maximum, during which multiple physiological (heart rate, electroencephalography) and subjective measures (self-reported feeling of mental fatigue, cognitive load, behand motivation, ratings of perceived exertion) were assessed. RESULTS: Self-reported feeling of mental fatigue was higher in EXP (72 ± 18) compared with CON (37 ± 17; P < 0.001). A significant decrease in flanker accuracy was detected only in EXP (from 0.96 ± 0.03% to 0.03%; P < 0.05). No significant differences between conditions were found in MRCP characteristics and perceived exertion. Specifically in EXP, alpha wave power increased during the leg extension task ( P < 0.01). CONCLUSIONS: Mental fatigue did not impact the perceived exertion or MRCP characteristics during the leg extension task. This could be related to low perceived exertion and/or the absence of a performance outcome during the leg extension task. The increase in alpha power during the leg extension task in EXP suggests that participants may engage a focused internal attention mechanism to maintain performance and mitigate feelings of fatigue.
Assuntos
Resistência Física , Esportes , Masculino , Humanos , Feminino , Adulto Jovem , Adulto , Estudos Cross-Over , Resistência Física/fisiologia , Estado Nutricional , Fadiga MentalRESUMO
INTRODUCTION: Mental fatigue (MF) significantly affects both cognitive and physical performance. However, the precise mechanisms, particularly concerning neurotransmission, require further investigation. An implication of the role of dopamine (DA) and noradrenaline (NA) is stated, but empirical evidence for this theory still needs to be provided. To address this gap, we aim to investigate the role of brain neurotransmission in elucidating if, and how prolonged cognitive activity induces MF and its subsequent impact on cognitive performance. METHODS: This study (registration number: G095422N) will adopt a randomized cross-over design with sixteen healthy participants aged 18-35 years. The sessions include a familiarization, two experimental (DA: 20mg Methylphenidate; NA: 8mg Reboxetine) conditions, and one placebo (lactose tablet: 10mg) condition. A 60-minute individualized Stroop task will be used to investigate whether, and how the onset of MF changes under the influence of reuptake inhibitors. Attention and response inhibition will be assessed before and after the MF-inducing task using a Go/NoGo task. The integration of physiological (electroencephalography, heart rate), behavioral (attention, response inhibition), and subjective indicators (scales and questionnaires) will be used to detect the underlying mechanisms holistically. Data analysis will involve linear mixed models with significance at p<0.05. DISCUSSION: The integration of diverse techniques and analyses offers a comprehensive perspective on the onset and impact of MF, introducing a novel approach. Future research plans involve extending this protocol to explore the connection between brain neurotransmission and physical fatigue. This protocol will further advance our understanding of the complex interplay between the brain and fatigue.
Assuntos
Encéfalo , Estudos Cross-Over , Fadiga Mental , Metilfenidato , Transmissão Sináptica , Humanos , Fadiga Mental/fisiopatologia , Adulto , Adolescente , Adulto Jovem , Encéfalo/fisiologia , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Metilfenidato/farmacologia , Masculino , Feminino , Reboxetina , Cognição/fisiologia , Norepinefrina/metabolismo , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Atenção/fisiologia , Atenção/efeitos dos fármacos , Eletroencefalografia , Dopamina/metabolismoRESUMO
The cholinergic system has been implicated in postural deficits, in particular falls, in Parkinson's disease (PD). Falls and freezing of gait typically occur during dynamic and challenging balance and gait conditions, such as when initiating gait, experiencing postural perturbations, or making turns. However, the precise cholinergic neural substrate underlying dynamic postural and gait changes remains poorly understood. The aim of this study was to investigate whether brain vesicular acetylcholine transporter binding, as measured with [18F]-fluoroethoxybenzovesamicol binding PET, correlates with dynamic gait and balance impairments in 125 patients with PD (mean age 66.89 ± 7.71 years) using the abbreviated balance evaluation systems test total and its four functional domain sub-scores (anticipatory postural control, reactive postural control, dynamic gait, and sensory integration). Whole brain false discovery-corrected (P < 0.05) correlations for total abbreviated balance evaluation systems test scores included the following bilateral or asymmetric hemispheric regions: gyrus rectus, orbitofrontal cortex, anterior part of the dorsomedial prefrontal cortex, dorsolateral prefrontal cortex, cingulum, frontotemporal opercula, insula, fimbria, right temporal pole, mesiotemporal, parietal and visual cortices, caudate nucleus, lateral and medial geniculate bodies, thalamus, lingual gyrus, cerebellar hemisphere lobule VI, left cerebellar crus I, superior cerebellar peduncles, flocculus, and nodulus. No significant correlations were found for the putamen or anteroventral putamen. The four domain-specific sub-scores demonstrated overlapping cholinergic topography in the metathalamus, fimbria, thalamus proper, and prefrontal cortices but also showed distinct topographic variations. For example, reactive postural control functions involved the right flocculus but not the upper brainstem regions. The anterior cingulum associated with reactive postural control whereas the posterior cingulum correlated with anticipatory control. The spatial extent of associated cholinergic system changes were least for dynamic gait and sensory orientation functional domains compared to the anticipatory and reactive postural control functions. We conclude that specific aspects of dynamic balance and gait deficits in PD associate with overlapping but also distinct patterns of cerebral cholinergic system changes in numerous brain regions. Our study also presents novel evidence of cholinergic topography involved in dynamic balance and gait in PD that have not been typically associated with mobility disturbances, such as the right anterior temporal pole, right anterior part of the dorsomedial prefrontal cortex, gyrus rectus, fimbria, lingual gyrus, flocculus, nodulus, and right cerebellar hemisphere lobules VI and left crus I.
RESUMO
BACKGROUND: Executive functions (EFs) and episodic memory are fundamental components of cognition that deteriorate with age and are crucial for independent living. While numerous reviews have explored the effect of exercise on these components in old age, these reviews screened and analyzed selected older adult populations, or specific exercise modes, thus providing only limited answers to the fundamental question on the effect of exercise on cognition in old age. This article describes the protocol for a systematic review and multilevel meta-analytic study aiming at evaluating the effectiveness of different types of chronic exercise in improving and/or maintaining EFs and long-term episodic memory in older adults. METHODS AND ANALYSIS: The study protocol was written in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Several databases will be searched. Randomized controlled trials (RCTs) conducted in older adults aged ≥ 60 years providing any kind of planned, structured, and repetitive exercise interventions, and EFs and/or episodic memory measures as outcomes, published in English in peer-reviewed journals and doctoral dissertations will be included. Two independent reviewers will screen the selected articles, while a third reviewer will resolve possible conflicts. The Cochrane risk-of-bias tool will be used to assess the quality of the studies. Finally, data will be extracted from the selected articles, and the formal method of combining individual data from the selected studies will be applied using a random effect multilevel meta-analysis. The data analysis will be conducted with the metafor package in R. DISCUSSION AND CONCLUSION: This review will synthesize the existing evidence and pinpoint gaps existing in the literature on the effects of exercise on EFs and episodic memory in healthy and unhealthy older adults. Findings from this meta-analysis will help to design effective exercise interventions for older adults to improve and/or maintain EFs and episodic memory. Its results will be useful for many researchers and professionals working with older adults and their families. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42022367111.
Assuntos
Função Executiva , Exercício Físico , Memória Episódica , Revisões Sistemáticas como Assunto , Humanos , Exercício Físico/fisiologia , Função Executiva/fisiologia , Idoso , Metanálise como Assunto , Cognição/fisiologiaRESUMO
Purpose: The ability to perform motor imagery has been shown to influence individual athletic performance and rehabilitation. Recent evidence supports its potential as a training tool to improve motor skills in children. Although there is a standardized assessment of the imagery abilities in Slovenian-speaking adults, there is currently no validated instrument for use with Slovenian children. Therefore, the aim of the present study was to conduct a linguistic validation study of the movement imagery questionnaire for children (MIQ-C). Methods: A total of 100 healthy children (mean age 10.3±1.3 years; 50 female) were assessed with a Slovenian version of the MIQ-C at Day 1 and Day 8. Inter-day agreement was examined using intraclass correlation coefficients (ICC). Construct validity and internal consistency were assessed using a Cronbach's alpha coefficient and exploratory - confirmatory factor analysis, respectively. Results: The test-retest ICC were very high for all three scales examined (ICCKI=0.90; ICCIVI=0.92; ICCEVI=0.90). Excellent internal consistency (up to 0.90) was found for kinaesthetic and both visual imageries. Confirmatory analysis confirmed a three-factorial structure of the MIQ-C. Conclusions: The Slovenian version of the MIQ-C proved to be highly reliable and valid in assessing children's motor imagery abilities, and as such for use with Slovene-speaking children. Moreover, this standardized instrument can be a helpful tool in training and rehabilitation practice with children aged 7-12 years.
RESUMO
Prolonged bed rest causes a multitude of deleterious physiological changes in the human body that require interventions even during immobilization to prevent or minimize these negative effects. In addition to other interventions such as physical and nutritional therapy, non-physical interventions such as cognitive training, motor imagery, and action observation have demonstrated efficacy in mitigating or improving not only cognitive but also motor outcomes in bedridden patients. Recent technological advances have opened new opportunities to implement such non-physical interventions in semi- or fully-immersive environments to enable the development of bed rest countermeasures. Extended Reality (XR), which covers augmented reality (AR), mixed reality (MR), and virtual reality (VR), can enhance the training process by further engaging the kinesthetic, visual, and auditory senses. XR-based enriched environments offer a promising research avenue to investigate the effects of multisensory stimulation on motor rehabilitation and to counteract dysfunctional brain mechanisms that occur during prolonged bed rest. This review discussed the use of enriched environment applications in bedridden patients as a promising tool to improve patient rehabilitation outcomes and suggested their integration into existing treatment protocols to improve patient care. Finally, the neurobiological mechanisms associated with the positive cognitive and motor effects of an enriched environment are highlighted.
RESUMO
BACKGROUND: In the last three decades, both medical and sports science professionals have recognized the considerable potential of digital-based interventions (DBI) to enhance the health-related outcomes of their practitioners. OBJECTIVES: This study aimed to investigate the effectiveness and potential moderators of DBI on measures of muscular strength. METHODS: Six databases (PubMed/MEDLINE, Web of Science, SportDiscus, Embase, Cochrane Register of Controlled Trials and Google Scholar) were searched for eligible studies up to June 2022. The GRADE, PEDRO, and TIDieR checklists were used to assess the quality of evidence, methodology, and completeness of intervention descriptions, respectively. RESULTS: A total of 56 studies were included in the meta-analysis (n = 2346), and participants were classified as healthy (n = 918), stroke survivors (n = 572), diagnosed with other neurological disorders (n = 683), and frail (n = 173). The DBI showed a small effect (standardized mean difference [SMD] = 0.28, 95% CI 0.21 to 0.31; p < 0.001) on strength, regardless of the type of intervention, control group, or tested body part. More specifically, while splitting the studies into different subgroups, a meta-analysis of 19 studies (n = 918) showed a small effect (SMD = 0.38, 95% CI 0.12 to 0.63; p = 0.003) on strength in the asymptomatic population. Similarly, small but positive effects of DBI were observed for stroke survivors (SMD = 0.34, 95% CI 0.13 to 0.56; p = 0.002), patients diagnosed with other neurological disorders (SMD = 0.17, 95% CI 0.03 to 0.32; p = 0.021), and the frail population (SMD = 0.25, 95% CI 0.0 to 0.5; p = 0.051). Sub-group analysis and meta-regression revealed that neither variable modified the effects of the DBI on measures of strength. CONCLUSIONS: Overall, DBI may serve as an effective method to improve measures of strength in adults, regardless of their health status as well as the type of digital device, the presence of human-computer interaction, and the age of participants. In addition, the DBI was found to be more effective than traditional training or rehabilitation methods.KEY MESSAGESDigital-based intervention (DBI) is effective in improving measures of muscular strength in adults regardless of participants' health statusDBIs were equally effective for strength improvements in lower and upper limbsAlthough, DBIs were found to be effective in improving muscular strength, most studies did not follow strength training guidelines when prescribing the interventions.
Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Adulto , Ensaios Clínicos Controlados Aleatórios como Assunto , Força Muscular , Nível de Saúde , Reabilitação do Acidente Vascular Cerebral/métodosRESUMO
Parkinson's disease (PD) is a neurodegenerative disorder that affects >1% of individuals worldwide and is manifested by motor symptoms such as tremor, rigidity, and bradykinesia, as well as non-motor symptoms such as cognitive impairment and depression. Non-pharmacological interventions such as dance therapy are becoming increasingly popular as complementary therapies for PD, in addition to pharmacological treatments that are currently widely available. Dance as a sensorimotor activity stimulates multiple layers of the neural system, including those involved in motor planning and execution, sensory integration, and cognitive processing. Dance interventions in healthy older people have been associated with increased activation of the prefrontal cortex, as well as enhanced functional connectivity between the basal ganglia, cerebellum, and prefrontal cortex. Overall, the evidence suggests that dance interventions can induce neuroplastic changes in healthy older participants, leading to improvements in both motor and cognitive functions. Dance interventions involving patients with PD show better quality of life and improved mobility, whereas the literature on dance-induced neuroplasticity in PD is sparse. Nevertheless, this review argues that similar neuroplastic mechanisms may be at work in patients with PD, provides insight into the potential mechanisms underlying dance efficacy, and highlights the potential of dance therapy as a non-pharmacological intervention in PD. Further research is warranted to determine the optimal dance style, intensity, and duration for maximum therapeutic benefit and to determine the long-term effects of dance intervention on PD progression.
RESUMO
The utilization of a non-invasive electroencephalogram (EEG) as an input sensor is a common approach in the field of the brain-computer interfaces (BCI). However, the collected EEG data pose many challenges, one of which may be the age-related variability of event-related potentials (ERPs), which are often used as primary EEG BCI signal features. To assess the potential effects of aging, a sample of 27 young and 43 older healthy individuals participated in a visual oddball study, in which they passively viewed frequent stimuli among randomly occurring rare stimuli while being recorded with a 32-channel EEG set. Two types of EEG datasets were created to train the classifiers, one consisting of amplitude and spectral features in time and another with extracted time-independent statistical ERP features. Among the nine classifiers tested, linear classifiers performed best. Furthermore, we show that classification performance differs between dataset types. When temporal features were used, maximum individuals' performance scores were higher, had lower variance, and were less affected overall by within-class differences such as age. Finally, we found that the effect of aging on classification performance depends on the classifier and its internal feature ranking. Accordingly, performance will differ if the model favors features with large within-class differences. With this in mind, care must be taken in feature extraction and selection to find the correct features and consequently avoid potential age-related performance degradation in practice.