RESUMO
The growing prevalence of fungal infections alongside rising resistance to antifungal drugs poses a significant challenge to public health safety. At the close of the 2000s, major pharmaceutical firms began to scale back on antimicrobial research due to repeated setbacks and diminished economic gains, leaving only smaller companies and research labs to pursue new antifungal solutions. Among various natural sources explored for novel antifungal compounds, antifungal peptides (AFPs) emerge as particularly promising. Despite their potential, AFPs receive less focus than their antibacterial counterparts. These peptides have been sourced extensively from nature, including plants, animals, insects, and especially bacteria and fungi. Furthermore, with advancements in recombinant biotechnology and computational biology, AFPs can also be synthesized in lab settings, facilitating peptide production. AFPs are noted for their wide-ranging efficacy, in vitro and in vivo safety, and ability to combat biofilms. They are distinguished by their high specificity, minimal toxicity to cells, and reduced likelihood of resistance development. This review aims to comprehensively cover AFPs, including their sources-both natural and synthetic-their antifungal and biofilm-fighting capabilities in laboratory and real-world settings, their action mechanisms, and the current status of AFP research. ONE-SENTENCE SUMMARY: This comprehensive review of AFPs will be helpful for further research in antifungal research.
Assuntos
Antifúngicos , Biofilmes , Fungos , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/uso terapêutico , Biofilmes/efeitos dos fármacos , Fungos/efeitos dos fármacos , Animais , Humanos , Micoses/tratamento farmacológico , Peptídeos/farmacologia , Peptídeos/química , Farmacorresistência Fúngica , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/químicaRESUMO
Phages are highly ubiquitous biological agents, which means they are ideal tools for molecular biology and recombinant DNA technology. The development of a phage display technology was a turning point in the design of phage-based vaccines. Phages are now recognized as universal adjuvant-free nanovaccine platforms. Phages are well-suited for vaccine design owing to their high stability in harsh conditions and simple and inexpensive large-scale production. The aim of this review is to summarize the overall breadth of the antiviral therapeutic perspective of phages contributing to the development of phage-based vaccines for COVID-19. We show that phage vaccines induce a strong and specific humoral response by targeted phage particles carrying the epitopes of SARS-CoV-2. Further, the engineering of the T4 bacteriophage by CRISPR (clustered regularly interspaced short palindromic repeats) presents phage vaccines as a valuable platform with potential capabilities of genetic plasticity, intrinsic immunogenicity, and stability.
Assuntos
Bacteriófagos , COVID-19 , Vacinas , Humanos , Bacteriófagos/genética , Vacinas contra COVID-19/genética , COVID-19/terapia , COVID-19/genética , SARS-CoV-2/genética , Bacteriófago T4/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente EspaçadasRESUMO
Vitamin D is an important nutrient for bone health, and vitamin D deficiency increases the risk of various diseases. Gilgit Baltistan, the northern-most area of Pakistan, has a high prevalence of vitamin D deficiency, despite many nutritional and food safety programmes. The present study aimed to find how knowledge, attitudes and practices associated with vitamin D related to the prevalence of vitamin D deficiency among people residing in different areas of Gilgit Baltistan. The cross-sectional study was descriptive and used data from a survey carried out between February 2019 and December 2020 on individuals of both sexes aged 10 years or over in Gilgit Baltistan. Of the 575 survey participants, 306 (53.2%) had experienced signs and symptoms of vitamin D deficiency, i.e. tiredness, fatigue and bone weakness. Approximately 64.8% had some general knowledge of vitamin D and its relation to health. Participants aged 19-25 years had the highest scores on knowledge of vitamin D. Only 22.7% of interviewees had ever taken any supplements and only 25.6% often exposed themselves to sunlight. Females' mean knowledge score (28.7; SD 7.02) was higher than that of males (24; SD 9.01). A lack of consistency was observed between attitude towards daylight exposure and knowledge of vitamin D. There was a large correlation between knowledge and attitude (p = 0.001), while a non-significant association was demonstrated between knowledge and practices (p = 0.1). Better knowledge, attitude and practices by people living in cities or more-developed regions indicates that education can be an effective way to provide awareness regarding micronutrient deficiencies. More emphasis is needed on enhancing knowledge, awareness and practices associated with vitamin D deficiency in rural areas of Pakistan. It is strongly recommended that an awareness campaign on micronutrients is launched in both rural and urban areas of Pakistan, concentrating on poor socioeconomic settings.
Assuntos
Conhecimentos, Atitudes e Prática em Saúde , Deficiência de Vitamina D , Masculino , Feminino , Humanos , Estudos Transversais , Paquistão/epidemiologia , Deficiência de Vitamina D/epidemiologia , Vitamina D , PrevalênciaRESUMO
Colorectal cancer (CRC) ranks as the second deadliest cancer globally and the third most common malignant tumor. While surgery remains the primary treatment for CRC, alternative therapies such as chemotherapy, molecular targeted therapy, and immunotherapy are also commonly used. The significant side effects and toxicity of conventional drugs drive the search for novel targeted therapies, including the design of advanced drug delivery systems. Polysaccharide-based biopolymers, with their low toxicity, non-immunogenic behavior, synergistic interactions with other biopolymers, and tissue and cell compatibility, emerge as excellent drug carriers for this application. This review aims to provide an in-depth overview of recent advancements in developing polysaccharide-based biopolymeric carriers for anticancer compounds in the treatment of CRC. We highlight the multifunctional nature of polysaccharides, showcasing their potential as standalone drug carriers or as integral components of intelligent robotic devices for biomedical therapeutic applications. In addition to exploring the opportunities for using carbohydrate polymers in CRC treatment, we address the challenges and failures that may limit their applicability in biomedical research, as well as summarize the recent preclinical and clinical trials, resulting in several commercialization attempts. This comprehensive overview critically summarizes the potential of polysaccharide-based biomaterials in CRC treatment.
RESUMO
Plants have an impact on the economy because they are used in the food and medical industries. Plants are a source of macro- and micronutrients for the health of humans and animals; however, the rise in microbial diseases has put plant health and yield at risk. Because there are insufficient controls, microbial infections annually impact approximately 25 % of the world's plant crops. Alternative strategies, such as biocontrol, are required to fight these illnesses. This review discusses the potential uses of recently discovered microorganisms because they are safe, effective, and unlikely to cause drug resistance. They have no negative effects on soil microbiology or the environment because they are environmentally benign. Biological control enhances indigenous microbiomes by reducing bacterial wilt, brown blotch, fire blight, and crown gall. More research is required to make these biocontrol agents more stable, effective, and less toxic before they can be used in commercial settings.
RESUMO
DPP4 (Dipeptidyl-peptidase 4) a versatile protease, emerges as a prominent player in soluble and membrane-bound forms. Its heightened expression has been intimately linked to the initiation and severity of diverse autoimmune diseases, spanning rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis (SSc), inflammatory bowel disease, autoimmune diabetes, and even SARS-CoV-2 infection. Operating as a co-stimulator of T cell activity, DPP4 propels T cell proliferation by binding adenosine deaminase (ADA), thereby augmenting the breakdown of adenosine-an influential inhibitor of T cell proliferation. However, the discovery of a wide range of DPP4 inhibitors has shown promise in alleviating these diseases' signs, symptoms, and severity. The available DPP4 inhibitors have demonstrated significant effectiveness in blocking DPP4 activity. Based on the characterization of their binding mechanisms, three distinct groups of DPP4 inhibitors have been identified: saxagliptin, alogliptin, and sitagliptin, each representing a different class. Elevated levels of angiotensin-converting enzyme 2 (ACE2) expression are associated with producing various coronavirus peptidases. With its anti-inflammatory properties, Sitagliptin may assist COVID-19 patients in preventing and managing cytokine storms. This comprehensive review delves into the burgeoning realm of DPP4 inhibitors as therapeutic interventions for diverse autoimmune diseases. With a discerning focus on their efficacy, the investigation sheds light on their remarkable capacity to alleviate the burdensome signs and symptoms intricately linked to these conditions.
RESUMO
Cancer is the primary cause of death in economically developed countries and the second leading cause in developing countries. Colorectal cancer (CRC) is the third most common cause of cancer-related deaths worldwide. Risk factors for CRC include obesity, a diet low in fruits and vegetables, physical inactivity, and smoking. CRC has a poor prognosis, and there is a critical need for new diagnostic and prognostic biomarkers to reduce related deaths. Recently, studies have focused more on molecular testing to guide targeted treatments for CRC patients. The most crucial feature of activated immune cells is the production and release of growth factors and cytokines that modulate the inflammatory conditions in tumor tissues. The cytokine network is valuable for the prognosis and pathogenesis of colorectal cancer as they can aid in the cost-effective and non-invasive detection of cancer. A large number of interleukins (IL) released by the immune system at various stages of CRC can act as "biomarkers". They play diverse functions in colorectal cancer, and include IL-4, IL-6, IL-8, IL-11, IL-17A, IL-22, IL-23, IL-33, TNF, TGF-ß, and vascular endothelial growth factor (VEGF), which are pro-tumorigenic genes. However, there are an inadequate number of studies in this area considering its correlation with cytokine profiles that are clinically useful in diagnosing cancer. A better understanding of cytokine levels to establish diagnostic pathways entails an understanding of cytokine interactions and the regulation of their various biochemical signaling pathways in healthy individuals. This review provides a comprehensive summary of some interleukins as immunological biomarkers of CRC.
RESUMO
The coronavirus disease 2019 (COVID-19) pandemic has prompted a lot of questions globally regarding the range of information about the virus's possible routes of transmission, diagnostics, and therapeutic tools. Worldwide studies have pointed out the importance of monitoring and early surveillance techniques based on the identification of viral RNA in wastewater. These studies indicated the presence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in human feces, which is shed via excreta including mucus, feces, saliva, and sputum. Subsequently, they get dumped into wastewater, and their presence in wastewater provides a possibility of using it as a tool to help prevent and eradicate the virus. Its monitoring is still done in many regions worldwide and serves as an early "warning signal"; however, a lot of limitations of wastewater surveillance have also been identified.