Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioinformatics ; 34(20): 3461-3469, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-29718115

RESUMO

Motivation: Binding-induced conformational changes challenge current computational docking algorithms by exponentially increasing the conformational space to be explored. To restrict this search to relevant space, some computational docking algorithms exploit the inherent flexibility of the protein monomers to simulate conformational selection from pre-generated ensembles. As the ensemble size expands with increased flexibility, these methods struggle with efficiency and high false positive rates. Results: Here, we develop and benchmark RosettaDock 4.0, which efficiently samples large conformational ensembles of flexible proteins and docks them using a novel, six-dimensional, coarse-grained score function. A strong discriminative ability allows an eight-fold higher enrichment of near-native candidate structures in the coarse-grained phase compared to RosettaDock 3.2. It adaptively samples 100 conformations each of the ligand and the receptor backbone while increasing computational time by only 20-80%. In local docking of a benchmark set of 88 proteins of varying degrees of flexibility, the expected success rate (defined as cases with ≥50% chance of achieving 3 near-native structures in the 5 top-ranked ones) for blind predictions after resampling is 77% for rigid complexes, 49% for moderately flexible complexes and 31% for highly flexible complexes. These success rates on flexible complexes are a substantial step forward from all existing methods. Additionally, for highly flexible proteins, we demonstrate that when a suitable conformer generation method exists, the method successfully docks the complex. Availability and implementation: As a part of the Rosetta software suite, RosettaDock 4.0 is available at https://www.rosettacommons.org to all non-commercial users for free and to commercial users for a fee. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Proteínas/metabolismo , Algoritmos , Ligantes , Ligação Proteica , Conformação Proteica , Proteínas/química , Software
2.
Proteins ; 85(3): 479-486, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27667482

RESUMO

The 28th-35th rounds of the Critical Assessment of PRotein Interactions (CAPRI) served as a practical benchmark for our RosettaDock protein-protein docking protocols, highlighting strengths and weaknesses of the approach. We achieved acceptable or better quality models in three out of 11 targets. For the two α-repeat protein-green fluorescent protein (αrep-GFP) complexes, we used a novel ellipsoidal partial-global docking method (Ellipsoidal Dock) to generate models with 2.2 Å/1.5 Å interface RMSD, capturing 49%/42% of the native contacts, for the 7-/5-repeat αrep complexes. For the DNase-immunity protein complex, we used a new predictor of hydrogen-bonding networks, HBNet with Bridging Waters, to place individual water models at the complex interface; models were generated with 1.8 Å interface RMSD and 12% native water contacts recovered. The targets for which RosettaDock failed to create an acceptable model were typically difficult in general, as six had no acceptable models submitted by any CAPRI predictor. The UCH-L5-RPN13 and UCH-L5-INO80G de-ubiquitinating enzyme-inhibitor complexes comprised inhibitors undergoing significant structural changes upon binding, with the partners being highly interwoven in the docked complexes. Our failure to predict the nucleosome-enzyme complex in Target 95 was largely due to tight constraints we placed on our model based on sparse biochemical data suggesting two specific cross-interface interactions, preventing the correct structure from being sampled. While RosettaDock's three successes show that it is a state-of-the-art docking method, the difficulties with highly flexible and multi-domain complexes highlight the need for better flexible docking and domain-assembly methods. Proteins 2017; 85:479-486. © 2016 Wiley Periodicals, Inc.


Assuntos
Algoritmos , Biologia Computacional/métodos , Simulação de Acoplamento Molecular/métodos , Software , Água/química , ATPases Associadas a Diversas Atividades Celulares , Motivos de Aminoácidos , Benchmarking , Sítios de Ligação , Cristalografia por Raios X , DNA Helicases/química , Proteínas de Ligação a DNA , Desoxirribonucleases/química , Endopeptidases/química , Ligação de Hidrogênio , Nucleossomos/química , Ligação Proteica , Conformação Proteica , Projetos de Pesquisa , Termodinâmica
3.
Protein Eng Des Sel ; 29(10): 409-418, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27276984

RESUMO

Antibodies are important immune molecules with high commercial value and therapeutic interest because of their ability to bind diverse antigens. Computational prediction of antibody structure can quickly reveal valuable information about the nature of these antigen-binding interactions, but only if the models are of sufficient quality. To achieve high model quality during complementarity-determining region (CDR) structural prediction, one must account for the VL-VH orientation. We developed a novel four-metric VL-VH orientation coordinate frame. Additionally, we extended the CDR grafting protocol in RosettaAntibody with a new method that diversifies VL-VH orientation by using 10 VL-VH orientation templates rather than a single one. We tested the multiple-template grafting protocol on two datasets of known antibody crystal structures. During the template-grafting phase, the new protocol improved the fraction of accurate VL-VH orientation predictions from only 26% (12/46) to 72% (33/46) of targets. After the full RosettaAntibody protocol, including CDR H3 remodeling and VL-VH re-orientation, the new protocol produced more candidate structures with accurate VL-VH orientation than the standard protocol in 43/46 targets (93%). The improved ability to predict VL-VH orientation will bolster predictions of other parts of the paratope, including the conformation of CDR H3, a grand challenge of antibody homology modeling.


Assuntos
Biologia Computacional/métodos , Anticorpos de Domínio Único/química , Bases de Dados de Proteínas , Modelos Moleculares , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa