Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Nano Lett ; 23(5): 1914-1923, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36852730

RESUMO

The long search for nontoxic alternatives to lead halide perovskites (LHPs) has shown that some compelling properties of LHPs, such as low effective masses of carriers, can only be attained in their closest Sn(II) and Ge(II) analogues, despite their tendency toward oxidation. Judicious choice of chemistry allowed formamidinium tin iodide (FASnI3) to reach a power conversion efficiency of 14.81% in photovoltaic devices. This progress motivated us to develop a synthesis of colloidal FASnI3 NCs with a concentration of Sn(IV) reduced to an insignificant level and to probe their intrinsic structural and optical properties. Intrinsic FASnI3 NCs exhibit unusually low absorption coefficients of 4 × 103 cm-1 at the first excitonic transition, a 190 meV increase of the band gap as compared to the bulk material, and a lack of excitonic resonances. These features are attributed to a highly disordered lattice, distinct from the bulk FASnI3 as supported by structural characterizations and first-principles calculations.

2.
Chemistry ; 29(14): e202203441, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36477929

RESUMO

Naphthalene tetracarboxylic diimides (NDIs) are highly promising air-stable n-type molecular semiconductor candidates for flexible and cost-effective organic solar cells and thermoelectrics. Nonetheless, thermal and polymorphic stabilities of environmentally stable NDIs in the low-to-medium temperature regime (<300 °C) remain challenging properties. Structural, thermal, spectroscopic, and computational features of polyfluorinated NDI-based molecular solids (with up to 14 F atoms per NDI molecule) are discussed upon increasing the fluorination level. Slip-stacked arrangement of the NDI cores with suitable π-π stacking and systematically short interplanar distances (<3.2 Å) are found. All these materials exhibit superior thermal stability (up to 260 °C or above) and thermal expansion coefficients indicating a response compatible with flexible polymeric substrates. Optical bandgaps increase from 2.78 to 2.93 eV with fluorination, while LUMO energy levels decrease down to -4.37 eV, as shown per DFT calculations. The compounds exhibit excellent solubility of 30 mg mL-1 in 1,4-dioxane and DMF.

3.
Molecules ; 28(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37764229

RESUMO

Two-dimensional layered coordination polymers based on the hetero-substituted 3-chloro-6-cyano-2,5-dihydroxybenzoquinone ligands, hereafter ClCNAn2- anilate, and LnIII ions (Tb and Eu) are reported. Compounds 1 and 2, formulated as Ln2(ClCNAn)3(DMSO)6 (LnIII = Tb, 1; Eu, 2), and their related intermediates 1' and 2', formulated as Ln2(ClCNAn)3(H2O)x·yH2O (x + y likely = 12, Ln = Tb, 1'; and Eu, 2'), were prepared by a conventional one-pot reaction (the latter) and recrystallized from DMSO solvent (the former). Polyhydrated intermediates 1' and 2' show very similar XRPD patterns, while, despite their common stoichiometry, 1 and 2 are not isostructural. Compound 1 consists of a 2D coordination framework of 3,6 topology, where [Tb(DMSO)3]III moieties are bridged by three bis-chelating ClCNAn2- ligands, forming distorted hexagons. Ultrathin nanosheets of 1 were obtained by exfoliation via the liquid-assisted sonication method and characterized by atomic force microscopy, confirming the 2D nature of 1. The crystal structure of 2, still showing the presence of 2D sheets with a "hexagonal" mesh and a common (3,6) connectivity, is based onto flat, non-corrugated slabs. Indeed, at a larger scale, the different "rectangular tiles" show clear roofing in 1, which is totally absent in 2. The magnetic behavior of 1 very likely indicates depopulation of the highest crystal-field levels, as expected for TbIII compounds.

4.
Angew Chem Int Ed Engl ; 62(45): e202310445, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37743252

RESUMO

Perylene diimides (PDI) are workhorses in the field of organic electronics, owing to their appealing n-semiconducting properties. Optimization of their performances is widely pursued by bay-atom substitution and diverse imide functionalization. Bulk solids and thin-films of these species crystallize in a variety of stacking configurations, depending on the geometry of the stable conformation of the polyaromatic core. We here demonstrate that 1,7-dibromo-substituted perylene diimides, PDI(H2 Br2 ), possessing a heavily twisted conformation in the gas phase, in solution and in the solids, can be easily flattened in the solid state into centrosymmetric molecules if the polyaromatic cores form π-π stabilized chains. This is achieved by using axial residues with low stereochemical hindrance, as guaranteed by a single CH2 /NH spacer directly linked to the imide function. Structural powder diffraction and DFT calculations on four newly designed species of the PDI(H2 Br2 ) class coherently show that, thanks to the flexibility of the N-X-Ar link (X=CH2 /NH), flat cores are indeed obtained by overcoming the interconversion barrier between twisted atropoisomers, of only 26.5 kJ mol-1 . This strategy may then be useful to induce "anomalously flat" polyaromatic cores of different kinds (substituted acenes/rylenes) in the solid state, towards suitable crystal packing and orbital interactions for improved electronic performances.

5.
Nanotechnology ; 33(42)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35820371

RESUMO

The structures of the disordered 1D (pseudo-)perovskites of general TMSO(PbxBiy)I3formulation [TMSO = (CH3)3SO+], obtained by doping the TMSOPbI3species with Bi3+ions, are investigated through the formulation of a statistical model of correlated disorder, which addresses the sequences of differently occupied BI6face-sharing octahedra (B = Pb, Bi or vacant site) within ideally infinite [(BI3)-]nchains. The x-ray diffraction patterns simulated on the basis of the model are matched to the experimental traces, which show many broad peaks with awkward (nearly trapezoidal) shapes, under the assumption that the charge balance is fully accomplished within each chain. The analysis allowed to establish a definite tendency of the metal species to cluster as pure Pb and Bi sequences. The application of the model is discussed critically, in particular as what concerns the possibility that further B-site neighbors beyond the second may influence the overall B-site occupancies.

6.
Molecules ; 27(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36364244

RESUMO

Tafamidis, chemical formula C14H7Cl2NO3, is a drug used to delay disease progression in adults suffering from transthyretin amyloidosis, and is marketed worldwide under different tradenames as a free acid or in the form of its meglumine salt. The free acid (CAS no. 594839-88-0) is reported to crystallize as distinct (polymorphic) crystal forms, the thermal stability and structural features of which remained thus far undisclosed. In this paper, we present-by selectively isolating highly pure batches of Tafamidis Form 1 and Tafamidis Form 4-the full characterization of these solids, in terms of crystal structures (determined using state-of-the-art structural powder diffraction methods) and spectroscopic and thermal properties. Beyond conventional thermogravimetric and calorimetric analyses, variable-temperature X-ray diffraction was employed to measure the highly anisotropic response of these (poly)crystalline materials to thermal stimuli and enabled the determination of the linear and volumetric thermal expansion coefficients and of the related indicatrix. Both crystal phases are monoclinic and contain substantially flat and π-π stacked Tafamidis molecules, arranged as centrosymmetric dimers by strong O-H···O bonds; weaker C-H···N contacts give rise, in both polymorphs, to infinite ribbons, which guarantee the substantial stiffness of the crystals in the direction of their elongation. Complete knowledge of the structural models will foster the usage of full-pattern quantitative phase analyses of Tafamidis in drug and polymorphic mixtures, an important aspect in both the forensic and the industrial sectors.


Assuntos
Cristalização , Cristalização/métodos , Difração de Pó , Difração de Raios X
7.
Nature ; 527(7578): 357-61, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26503057

RESUMO

As a cleaner, cheaper, and more globally evenly distributed fuel, natural gas has considerable environmental, economic, and political advantages over petroleum as a source of energy for the transportation sector. Despite these benefits, its low volumetric energy density at ambient temperature and pressure presents substantial challenges, particularly for light-duty vehicles with little space available for on-board fuel storage. Adsorbed natural gas systems have the potential to store high densities of methane (CH4, the principal component of natural gas) within a porous material at ambient temperature and moderate pressures. Although activated carbons, zeolites, and metal-organic frameworks have been investigated extensively for CH4 storage, there are practical challenges involved in designing systems with high capacities and in managing the thermal fluctuations associated with adsorbing and desorbing gas from the adsorbent. Here, we use a reversible phase transition in a metal-organic framework to maximize the deliverable capacity of CH4 while also providing internal heat management during adsorption and desorption. In particular, the flexible compounds Fe(bdp) and Co(bdp) (bdp(2-) = 1,4-benzenedipyrazolate) are shown to undergo a structural phase transition in response to specific CH4 pressures, resulting in adsorption and desorption isotherms that feature a sharp 'step'. Such behaviour enables greater storage capacities than have been achieved for classical adsorbents, while also reducing the amount of heat released during adsorption and the impact of cooling during desorption. The pressure and energy associated with the phase transition can be tuned either chemically or by application of mechanical pressure.

8.
Sensors (Basel) ; 21(14)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34300663

RESUMO

This paper investigates the electrochemical properties of a new Cu(II)-based metal-organic framework (MOF). Noted as Cu-YBDC, it is built upon a linker containing the propargyl carbamate functionality and immobilized on a glassy carbon electrode by drop-casting (GC/Cu-YBDC). Afterward, GC/Cu-YBDC was treated with HAuCl4 and the direct electro-deposition of Au nanoparticles was carried at 0.05 V for 600 s (GC/Au/Cu-YBDC). The performance of both electrodes towards nitrite oxidation was tested and it was found that GC/Au/Cu-YBDC exhibited a better electrocatalytic behavior toward the oxidation of nitrite than GC/Cu-YBDC with enhanced catalytic currents and a reduced nitrite overpotential from 1.20 to 0.90 V. Additionally GC/Au/Cu-YBDC showed a low limit of detection (5.0 µM), an ultrafast response time (<2 s), and a wide linear range of up to 8 mM in neutral pH.


Assuntos
Nanopartículas Metálicas , Estruturas Metalorgânicas , Carbamatos , Cobre , Técnicas Eletroquímicas , Eletrodos , Ouro , Ligantes , Limite de Detecção , Nitritos , Ácidos Ftálicos
9.
J Sci Food Agric ; 101(4): 1307-1313, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32789867

RESUMO

BACKGROUND: The use of nanomaterials for the efficient delivery of active species in viticulture is still an unexplored opportunity. Nitrogen, an essential nutrient for grapevine development and wine quality, is commonly provided in the form of urea. However, the application of conventional fertilisers contributes to nitrate leaching and denitrification, thus polluting groundwater and causing a serious environmental impact. Nanotechnology is offering smart solutions towards more sustainable and efficient agriculture. In the present work, we assessed the efficiency of nontoxic amorphous calcium phosphate (ACP) nanoparticles as nanocarriers of urea (U-ACP) through field experiments on Tempranillo grapevines. Four treatments were foliarly applied: U-ACP nanofertiliser (0.4 kg N ha-1 ), commercial urea solutions at 3 and 6 kg N ha-1 (U3 and U6) and a control treatment (water). RESULTS: The grapes harvested from plants treated with U-ACP and U6 provided similar levels of yeast assimilable nitrogen, despite the very large reduction of nitrogen dosage. The concentration of amino acids was greater in U-ACP-treated plants than those of the control and U3 treatments and, barring a few exceptions, the values were comparable with those observed in grapes obtained following U6 treatment. Nanofertilisers provided a high arginine concentration in the musts but low proline concentrations in comparison to the U6 treatment. CONCLUSIONS: The results of this work show the potential benefits of nanotechnology over conventional practices for nitrogen fertilisation. Significantly, the application of U-ACP allowed a considerable reduction of nitrogen dosage to maintain the quality of the harvest, thereby mitigating the environmental impact. © 2020 Society of Chemical Industry.


Assuntos
Produção Agrícola/métodos , Frutas/química , Folhas de Planta/metabolismo , Ureia/metabolismo , Vitis/metabolismo , Fosfatos de Cálcio/química , Fosfatos de Cálcio/metabolismo , Portadores de Fármacos/química , Fertilizantes/análise , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Nanopartículas/metabolismo , Ureia/química , Vitis/química , Vitis/crescimento & desenvolvimento , Vinho/análise
10.
Molecules ; 26(1)2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33375645

RESUMO

Eltrombopag, of C25H22N4O4 chemical formula, is a drug used against thrombocytopenia, marketed worldwide under different tradenames in the form of its bis-olamine salt. The free acid (CAS no. 496775-61-2) is an intermediate species used for the final drug isolation and is reported to crystallize in more than 20 distinct crystal forms, including a large number of hydrates and solvates. Their identification, and, ultimately, their quantification in industrial lots require the usage of accurately measured X-ray powder diffraction pattern, as well as the assessment of the metrical features (crystal symmetry and lattice parameters), nowadays accessible by powerful crystallographic software. Here, the complete indexing of 13 monophasic samples, prepared using literature or newly tailored crystallization methods, jointly to simultaneous thermogravimetric and calorimetric analyses and to variable temperature X-ray diffraction studies, provide a clear picture of the stability fields of the different crystal phases and their mutual interconversion processes, leading, in a few cases, to new and unexpected crystalline polymorphs or solvates of the pristine unsolvated Form I.


Assuntos
Benzoatos/química , Hidrazinas/química , Pirazóis/química , Solventes/química , Trombocitopenia/tratamento farmacológico , Água/química , Benzoatos/uso terapêutico , Cristalização , Cristalografia por Raios X , Humanos , Hidrazinas/uso terapêutico , Ligação de Hidrogênio , Estrutura Molecular , Difração de Pó , Pirazóis/uso terapêutico , Termogravimetria , Difração de Raios X
11.
Org Biomol Chem ; 16(38): 6853-6859, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30065979

RESUMO

A straightforward indole synthesis via annulation of C-nitrosoaromatics with conjugated terminal alkynones was realised achieving a simple, highly regioselective, atom- and step economical access to 3-aroylindoles in moderate to good yields. Further functionalizations of indole scaffolds were investigated and an easy way to JWH-018, a synthetic cannabinoid, was achieved.

12.
Nat Mater ; 15(9): 987-94, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27295101

RESUMO

Size and shape tunability and low-cost solution processability make colloidal lead chalcogenide quantum dots (QDs) an emerging class of building blocks for innovative photovoltaic, thermoelectric and optoelectronic devices. Lead chalcogenide QDs are known to crystallize in the rock-salt structure, although with very different atomic order and stoichiometry in the core and surface regions; however, there exists no convincing prior identification of how extreme downsizing and surface-induced ligand effects influence structural distortion. Using forefront X-ray scattering techniques and density functional theory calculations, here we have identified that, at sizes below 8 nm, PbS and PbSe QDs undergo a lattice distortion with displacement of the Pb sublattice, driven by ligand-induced tensile strain. The resulting permanent electric dipoles may have implications on the oriented attachment of these QDs. Evidence is found for a Pb-deficient core and, in the as-synthesized QDs, for a rhombic dodecahedral shape with nonpolar {110} facets. On varying the nature of the surface ligands, differences in lattice strains are found.

13.
Mol Pharm ; 14(2): 468-477, 2017 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-28059514

RESUMO

The phenomenon of polymorphism is of great relevance in pharmaceutics, since different polymorphs have different physicochemical properties, e.g., solubility, hence, bioavailability. Coupling diffractometric and spectroscopic experiments with thermodynamic analysis and computational work opens to a methodological approach which provides information on both structure and dynamics in the solid as well as in solution. The present work reports on the conformational changes in crystalline iopamidol, which is characterized by atropisomerism, a phenomenon that influences both the solution properties and the distinct crystal phases. The conformation of iopamidol is discussed for three different crystal phases. In the anhydrous and monohydrate crystal forms, iopamidol molecules display a syn conformation of the long branches stemming out from the triiodobenzene ring, while in the pentahydrate phase the anti conformation is found. IR and Raman spectroscopic studies carried out on the three crystal forms, jointly with quantum chemical computations, revealed that the markedly different spectral features can be specifically attributed to the different molecular conformations. Our results on the conformational versatility of iopamidol in different crystalline phases, linking structural and spectroscopic evidence for the solution state and the solid forms, provide a definite protocol for grasping the signals that can be taken as conformational markers. This is the first step for understanding the crystallization mechanism occurring in supersaturated solution of iopamidol molecules.


Assuntos
Meios de Contraste/química , Iopamidol/química , Cristalização/métodos , Modelos Moleculares , Conformação Molecular , Mielografia/métodos , Solubilidade , Soluções/química , Análise Espectral Raman/métodos , Termodinâmica
14.
Angew Chem Int Ed Engl ; 56(8): 2118-2122, 2017 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-28097756

RESUMO

Unprecedented fast and efficient complexation of ScIII was demonstrated with the chelating agent AAZTA (AAZTA=1,4-bis(carboxymethyl)-6-[bis(carboxymethyl)]amino-6-methylperhydro-1,4-diazepine) under mild experimental conditions. The robustness of the 44 Sc(AAZTA)- chelate and conjugated biomolecules thereof is further shown by in vivo PET imaging in healthy and tumor mice models. The new results pave the way towards development of efficient Sc-based radiopharmaceuticals using the AAZTA chelator.

15.
J Am Chem Soc ; 138(43): 14202-14205, 2016 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-27737545

RESUMO

Bright green emitters with adjustable photoluminescence (PL) maxima in the range of 530-535 nm and full-width at half-maxima (fwhm) of <25 nm are particularly desirable for applications in television displays and related technologies. Toward this goal, we have developed a facile synthesis of highly monodisperse, cubic-shaped formamidinium lead bromide nanocrystals (FAPbBr3 NCs) with perovskite crystal structure, tunable PL in the range of 470-540 nm by adjusting the nanocrystal size (5-12 nm), high quantum yield (QY) of up to 85% and PL fwhm of <22 nm. High QYs are also retained in films of FAPbBr3 NCs. In addition, these films exhibit low thresholds of 14 ± 2 µJ cm-2 for amplified spontaneous emission.

16.
Mol Pharm ; 13(9): 3034-42, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27428180

RESUMO

Microcrystalline vinpocetine, coground with cross-linked polyvinylpyrrolidone, affords hybrids containing nanosized drug nanocrystals, the size and size distributions of which depend on milling times and drug-to-polymer weight ratios. Using an innovative approach to microstructural characterization, we analyzed wide-angle X-ray total scattering data by the Debye function analysis and demonstrated the possibility to characterize pharmaceutical solid dispersions obtaining a reliable quantitative view of the physicochemical status of the drug dispersed in an amorphous carrier. The microstructural properties derived therefrom have been successfully employed in reconciling the enigmatic difference in behavior between in vitro and in vivo solubility tests performed on nanosized vinpocetine embedded in a polymeric matrix.


Assuntos
Nanoestruturas/química , Polímeros/química , Povidona/química , Alcaloides de Vinca/química , Portadores de Fármacos/química
17.
Chemistry ; 20(5): 1389-402, 2014 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-24382709

RESUMO

Alkynyl gold(I) metallaligands [(AuC≡Cbpyl)2(µ-diphosphine)] (bpyl=2,2'-bipyridin-5-yl; diphosphine=Ph2P(CH2)(n)PPh2, [n=3 (L(Pr)), 4 (L(Bu)), 5 (L(Pent)), 6 (L(Hex))], dppf (L(Fc)), Binap (L(Binap)) and Diop (L(Diop))) react with MX2 (M=Fe, Zn, X=ClO4; M=Co, X=BF4) to give triple helicates [M2(L(R))3]X4. These complexes, except those containing the semirigid L(Binap) metallaligand, present similar hydrodynamic radii (determined by diffusion NMR spectroscopy measurements) and a similar pattern in the aromatic region of their (1)H NMR spectra, which suggests that in solution they adopt a compact structure where the long and flexible organometallic strands are folded. The diastereoselectivity of the self-assembly process was studied by using chiral metallaligands, and the absolute configuration of the iron(II) complexes with L(Binap) and L(Diop) was determined by circular dichroism spectroscopy (CD). Thus, (R)-L(Binap) or (S)-L(Binap) specifically induce the formation of (Δ,Δ)-[Fe2((R)-L(Binap))3](ClO4)4 or (Λ,Λ)-[Fe2((S)-L(Binap))3](ClO4)4, respectively, whereas (R,R)- or (S,S)-L(Diop) give mixtures of the ΔΔ- and ΛΛ-diastereomers. The ΔΔ helicate diastereomer is dominant in the reaction of Fe(II) with (R,R)-L(Diop), whereas the ΛΛ isomer predominates in the analogous reaction with (S,S)-L(Diop). The photophysical properties of the new dinuclear alkynyl complexes and the helicates have been studied. The new metallaligands and the [Zn2(L(R))3](4+) helicates present luminescence from [π→π*] excited states mainly located in the C≡Cbpyl units.

18.
Inorg Chem ; 53(18): 9827-36, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25157585

RESUMO

Reaction of iron(II) selenocyanate (obtained from Fe(ClO4)2 and KNCSe) with 2-(N,N-bis(2-pyridyl)amino)-4,6-bis(pentafluorophenoxy)-(1,3,5)triazine (L1(F)) in propionitrile produces the compound [Fe(L1(F))2(NCSe)2]·2CH3CH2CN (1(NCSe)·2PrCN), which shows spin-crossover (SCO) properties characterized by a T(1/2) of 283 K and a ΔT80 (i.e., temperature range within which 80% of the transition considered occurs) of about 65 K. Upon air exposure, 1(NCSe)·2PrCN gradually converts to a new SCO species that exhibits different properties, as reflected by T(1/2) = 220 K and ΔT80 = 70 K. Various characterization techniques, namely, IR spectroscopy, thermogravimetric analysis, and thermodiffractometric studies, reveal that the new phase is obtained through the loss of the lattice propionitrile molecules within several days upon air exposure or several hours upon heating above 390 K.

19.
ACS Nano ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38320982

RESUMO

The compositional engineering of lead-halide perovskite nanocrystals (NCs) via the A-site cation represents a lever to fine-tune their structural and electronic properties. However, the presently available chemical space remains minimal since, thus far, only three A-site cations have been reported to favor the formation of stable lead-halide perovskite NCs, i.e., Cs+, formamidinium (FA), and methylammonium (MA). Inspired by recent reports on bulk single crystals with aziridinium (AZ) as the A-site cation, we present a facile colloidal synthesis of AZPbBr3 NCs with a narrow size distribution and size tunability down to 4 nm, producing quantum dots (QDs) in the regime of strong quantum confinement. NMR and Raman spectroscopies confirm the stabilization of the AZ cations in the locally distorted cubic structure. AZPbBr3 QDs exhibit bright photoluminescence with quantum efficiencies of up to 80%. Stabilized with cationic and zwitterionic capping ligands, single AZPbBr3 QDs exhibit stable single-photon emission, which is another essential attribute of QDs. In particular, didodecyldimethylammonium bromide and 2-octyldodecyl-phosphoethanolamine ligands afford AZPbBr3 QDs with high spectral stability at both room and cryogenic temperatures, reduced blinking with a characteristic ON fraction larger than 85%, and high single-photon purity (g(2)(0) = 0.1), all comparable to the best-reported values for MAPbBr3 and FAPbBr3 QDs of the same size.

20.
Chem Mater ; 36(7): 3452-3463, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38617804

RESUMO

This work challenges the conventional approach of using NdIII 4F3/2 lifetime changes for evaluating the experimental NdIII → YbIII energy transfer rate and efficiency. Using near-infrared (NIR) emitting Nd:Yb mixed-metal coordination polymers (CPs), synthesized via solvent-free thermal grinding, we demonstrate that the NdIII [2H11/2 → 4I15/2] → YbIII [2F7/2 → 2F5/2] pathway, previously overlooked, dominates energy transfer due to superior energy resonance and J-level selection rule compatibility. This finding upends the conventional focus on the NdIII [4F3/2 → 4I11/2] → YbIII [2F7/2 → 2F5/2] transition pathway. We characterized Nd0.890Yb0.110(BTC)(H2O)6 as a promising cryogenic NIR thermometry system and employed our novel energy transfer understanding to perform simulations, yielding theoretical thermometric parameters and sensitivities for diverse Nd:Yb ratios. Strikingly, experimental thermometric data closely matched the theoretical predictions, validating our revised model. This novel perspective on NdIII → YbIII energy transfer holds general applicability for the NdIII/YbIII pair, unveiling an important spectroscopic feature with broad implications for energy transfer-driven materials design.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa