Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Comput Chem ; 41(25): 2203-2212, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32730684

RESUMO

The elongation method with intermediate mechanical and electrostatic embedding (ELG-IMEE) is proposed. The electrostatic embedding uses atomic charges generated by a charge sensitivity analysis (CSA) method and parameterized for three different population analyses, namely, the Merz-Singh-Kollman scheme, the charge model 5, and the atomic polar tensor. The obtained CSA models were tested on two model systems. Test calculations show that the electrostatic embedding provides several times of decrease in the difference of energies of testing and reference calculations in comparison with the conventional elongation approach (ELG). The mechanical embedding is implemented in a combination of the conventional elongation method and the ONIOM approach. Moreover, it was demonstrated that the geometry optimization with the ELG-IMEE reduces the errors in the optimized structures by about one order in root-mean-square deviation, when compared to ELG.

2.
J Chem Theory Comput ; 19(16): 5548-5562, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37471461

RESUMO

The local excitation approximation (LEA), a method for the calculation of electronic excitations localized in a specific region of a molecule, has been modified with new approaches to enhance the accuracy of the original method. The primary concept behind LEA involves isolating the region of interest as a submolecule from the full molecule using a localization method, followed by calculating electronic excitations solely within this submolecule. In this study, we examined approaches that improve the accuracy in describing the region of interest, particularly its molecular orbital energies. Additionally, the localization method was extended with a new projection technique to accelerate calculations. These approaches were studied in time-dependent density functional theory (TDDFT) calculations applied to four testing systems with a chromophore as the region of interest: two basic linear molecules, acrolein surrounded by 24 water molecules, and a model of a green fluorescent protein. For all studied systems, the results of TDDFT calculations combined with LEA exhibited near-zero error when groups of atoms adjacent to the chromophore were explicitly included in the submolecule. This was achieved with at least a quadratic speedup of the calculation time as a function of the submolecule size.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa