Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
PLoS Genet ; 19(7): e1010344, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37418499

RESUMO

The chloroplast proteome is a dynamic mosaic of plastid- and nuclear-encoded proteins. Plastid protein homeostasis is maintained through the balance between de novo synthesis and proteolysis. Intracellular communication pathways, including the plastid-to-nucleus signalling and the protein homeostasis machinery, made of stromal chaperones and proteases, shape chloroplast proteome based on developmental and physiological needs. However, the maintenance of fully functional chloroplasts is costly and under specific stress conditions the degradation of damaged chloroplasts is essential to the maintenance of a healthy population of photosynthesising organelles while promoting nutrient redistribution to sink tissues. In this work, we have addressed this complex regulatory chloroplast-quality-control pathway by modulating the expression of two nuclear genes encoding plastid ribosomal proteins PRPS1 and PRPL4. By transcriptomics, proteomics and transmission electron microscopy analyses, we show that the increased expression of PRPS1 gene leads to chloroplast degradation and early flowering, as an escape strategy from stress. On the contrary, the overaccumulation of PRPL4 protein is kept under control by increasing the amount of plastid chaperones and components of the unfolded protein response (cpUPR) regulatory mechanism. This study advances our understanding of molecular mechanisms underlying chloroplast retrograde communication and provides new insights into cellular responses to impaired plastid protein homeostasis.


Assuntos
Proteoma , Proteostase , Proteostase/genética , Proteoma/genética , Proteoma/metabolismo , Plastídeos/genética , Plastídeos/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Transdução de Sinais/fisiologia , Proteínas de Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Plant Physiol ; 194(4): 2117-2135, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38060625

RESUMO

The gynoecium is critical for the reproduction of flowering plants as it contains the ovules and the tissues that foster pollen germination, growth, and guidance. These tissues, known as the reproductive tract (ReT), comprise the stigma, style, and transmitting tract (TT). The ReT and ovules originate from the carpel margin meristem (CMM) within the pistil. SHOOT MERISTEMLESS (STM) is a key transcription factor for meristem formation and maintenance. In all above-ground meristems, including the CMM, local STM downregulation is required for organ formation. However, how this downregulation is achieved in the CMM is unknown. Here, we have studied the role of HISTONE DEACETYLASE 19 (HDA19) in Arabidopsis (Arabidopsis thaliana) during ovule and ReT differentiation based on the observation that the hda19-3 mutant displays a reduced ovule number and fails to differentiate the TT properly. Fluorescence-activated cell sorting coupled with RNA-sequencing revealed that in the CMM of hda19-3 mutants, genes promoting organ development are downregulated while meristematic markers, including STM, are upregulated. HDA19 was essential to downregulate STM in the CMM, thereby allowing ovule formation and TT differentiation. STM is ectopically expressed in hda19-3 at intermediate stages of pistil development, and its downregulation by RNA interference alleviated the hda19-3 phenotype. Chromatin immunoprecipitation assays indicated that STM is a direct target of HDA19 during pistil development and that the transcription factor SEEDSTICK is also required to regulate STM via histone acetylation. Thus, we identified factors required for the downregulation of STM in the CMM, which is necessary for organogenesis and tissue differentiation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Histonas/genética , Óvulo Vegetal/genética , Óvulo Vegetal/metabolismo , Arabidopsis/fisiologia , Fatores de Transcrição/metabolismo , Meristema , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Histona Desacetilases/metabolismo
3.
Cell ; 132(2): 273-85, 2008 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-18243102

RESUMO

During photosynthesis, two photoreaction centers located in the thylakoid membranes of the chloroplast, photosystems I and II (PSI and PSII), use light energy to mobilize electrons to generate ATP and NADPH. Different modes of electron flow exist, of which the linear electron flow is driven by PSI and PSII, generating ATP and NADPH, whereas the cyclic electron flow (CEF) only generates ATP and is driven by the PSI alone. Different environmental and metabolic conditions require the adjustment of ATP/NADPH ratios and a switch of electron distribution between the two photosystems. With the exception of PGR5, other components facilitating CEF are unknown. Here, we report the identification of PGRL1, a transmembrane protein present in thylakoids of Arabidopsis thaliana. Plants lacking PGRL1 show perturbation of CEF, similar to PGR5-deficient plants. We find that PGRL1 and PGR5 interact physically and associate with PSI. We therefore propose that the PGRL1-PGR5 complex facilitates CEF in eukaryotes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Membrana/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Tilacoides/química , Trifosfato de Adenosina/biossíntese , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , DNA de Plantas/genética , DNA de Plantas/isolamento & purificação , Transporte de Elétrons , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Cinética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Modelos Biológicos , Dados de Sequência Molecular , Mutação , NADP/biossíntese , Oxirredução , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Plastoquinona/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Frações Subcelulares/metabolismo
4.
BMC Plant Biol ; 21(1): 238, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34044765

RESUMO

Fruits and seeds resulting from fertilization of flowers, represent an incredible evolutionary advantage in angiosperms and have seen them become a critical element in our food supply.Many studies have been conducted to reveal how fruit matures while protecting growing seeds and ensuring their dispersal. As result, several transcription factors involved in fruit maturation and senescence have been isolated both in model and crop plants. These regulators modulate several cellular processes that occur during fruit ripening such as chlorophyll breakdown, tissue softening, carbohydrates and pigments accumulation.The NAC superfamily of transcription factors is known to be involved in almost all these aspects of fruit development and maturation. In this review, we summarise the current knowledge regarding NACs that modulate fruit ripening in model species (Arabidopsis thaliana and Solanum lycopersicum) and in crops of commercial interest (Oryza sativa, Malus domestica, Fragaria genus, Citrus sinensis and Musa acuminata).


Assuntos
Arabidopsis/genética , Frutas/genética , Solanum lycopersicum/genética , Fatores de Transcrição/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Frutas/enzimologia , Frutas/fisiologia , Solanum lycopersicum/crescimento & desenvolvimento , Pigmentação , Fatores de Transcrição/genética
5.
Int J Mol Sci ; 22(5)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807566

RESUMO

Angiosperm reproduction relies on the precise growth of the pollen tube through different pistil tissues carrying two sperm cells into the ovules' embryo sac, where they fuse with the egg and the central cell to accomplish double fertilization and ultimately initiate seed development. A network of intrinsic and tightly regulated communication and signaling cascades, which mediate continuous interactions between the pollen tube and the sporophytic and gametophytic female tissues, ensures the fast and meticulous growth of pollen tubes along the pistil, until it reaches the ovule embryo sac. Most of the pollen tube growth occurs in a specialized tissue-the transmitting tract-connecting the stigma, the style, and the ovary. This tissue is composed of highly secretory cells responsible for producing an extensive extracellular matrix. This multifaceted matrix is proposed to support and provide nutrition and adhesion for pollen tube growth and guidance. Insights pertaining to the mechanisms that underlie these processes remain sparse due to the difficulty of accessing and manipulating the female sporophytic tissues enclosed in the pistil. Here, we summarize the current knowledge on this key step of reproduction in flowering plants with special emphasis on the female transmitting tract tissue.


Assuntos
Fertilização/fisiologia , Flores/fisiologia , Óvulo Vegetal/fisiologia , Matriz Extracelular/fisiologia , Flores/metabolismo , Magnoliopsida/metabolismo , Magnoliopsida/fisiologia , Óvulo Vegetal/metabolismo , Proteínas de Plantas/metabolismo , Tubo Polínico/metabolismo , Tubo Polínico/fisiologia , Sementes/metabolismo , Transdução de Sinais/fisiologia
6.
Eur Heart J ; 40(36): 3026-3032, 2019 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-31377776

RESUMO

AIMS: It is unknown whether cardioversion of atrial fibrillation causes thromboembolic events or is a risk marker. To assess causality, we examined the temporal pattern of thromboembolism in patients having cardioversion. METHODS AND RESULTS: We studied patients randomized to aspirin or aspirin plus clopidogrel in the ACTIVE trials, comparing the thromboembolic rate in the peri-cardioversion period (30 days before until 30 days after) to the rate during follow-up, remote from cardioversion. Among 962 patients, the 30-day thromboembolic rate remote from cardioversion was 0.16%; while it was 0.73% in the peri-cardioversion period [hazard ratio (HR) 4.1, 95% confidence interval (CI) 2.1-7.9]. The 30-day thromboembolic rates in the periods immediately before and after cardioversion were 0.47% and 0.96%, respectively (HR 2.2, 95% CI 0.7-7.1). Heart failure (HF) hospitalization increased in the peri-cardioversion period (HR 11.5, 95% CI 6.8-19.4). Compared to baseline, the thromboembolic rate in the 30 days following cardioversion was increased both in patients who received oral anticoagulation or a transoesophageal echocardiogram prior to cardioversion (HR 7.9, 95% CI 2.8-22.4) and in those who did not (HR 4.8, 95% CI 1.6-14.9) (interaction P = 0.2); the risk was also increased with successful (HR 4.5; 95% CI 2.0-10.5) and unsuccessful (HR 10.2; 95% CI 2.3-44.9) cardioversion. CONCLUSIONS: Thromboembolic risk increased in the 30 days before cardioversion and persisted until 30 days post-cardioversion, in a pattern similar to HF hospitalization. These data suggest that the increased thromboembolic risk around the time of cardioversion may not be entirely causal, but confounded by the overall clinical deterioration of patients requiring cardioversion.


Assuntos
Fibrilação Atrial/terapia , Cardioversão Elétrica , Inibidores da Agregação Plaquetária/uso terapêutico , Tromboembolia/epidemiologia , Idoso , Aspirina/uso terapêutico , Clopidogrel/uso terapêutico , Feminino , Seguimentos , Insuficiência Cardíaca/epidemiologia , Hospitalização/estatística & dados numéricos , Humanos , Masculino , Ensaios Clínicos Controlados Aleatórios como Assunto , Risco
7.
Development ; 143(18): 3372-81, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27510967

RESUMO

Seed dispersal is an essential trait that enables colonization of new favorable habitats, ensuring species survival. In plants with dehiscent fruits, such as Arabidopsis, seed dispersal depends on two processes: the separation of the fruit valves that protect the seeds (fruit dehiscence) and the detachment of the seeds from the funiculus connecting them to the mother plant (seed abscission). The key factors required to establish a proper lignin pattern for fruit dehiscence are SHATTERPROOF 1 and 2 (SHP1 and SHP2). Here, we demonstrate that the SHP-related gene SEEDSTICK (STK) is a key factor required to establish the proper lignin pattern in the seed abscission zone but in an opposite way. We show that STK acts as a repressor of lignin deposition in the seed abscission zone through the direct repression of HECATE3, whereas the SHP proteins promote lignin deposition in the valve margins by activating INDEHISCENT. The interaction of STK with the SEUSS co-repressor determines the difference in the way STK and SHP proteins control the lignification patterns. Despite this difference in the molecular control of lignification during seed abscission and fruit dehiscence, we show that the genetic networks regulating these two developmental pathways are highly conserved.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Frutas/metabolismo , Dispersão de Sementes/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Frutas/fisiologia , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/fisiologia , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Dispersão de Sementes/genética
8.
Plant Physiol ; 178(3): 1249-1268, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30275057

RESUMO

Fruits protect the developing seeds of angiosperms and actively contribute to seed dispersion. Furthermore, fruit and seed development are highly synchronized and require exchange of information between the mother plant and the developing generations. To explore the mechanisms controlling fruit formation and maturation, we performed a transcriptomic analysis on the valve tissue of the Arabidopsis (Arabidopsis thaliana) silique using RNA sequencing. In doing so, we have generated a data set of differentially regulated genes that will help to elucidate the molecular mechanisms that underpin the initial phase of fruit growth and, subsequently, trigger fruit maturation. The robustness of our data set has been tested by functional genomic studies. Using a reverse genetics approach, we selected 10 differentially expressed genes and explored the consequences of their disruption for both silique growth and senescence. We found that genes contained in our data set play essential roles in different stages of silique development and maturation, indicating that our transcriptome-based gene list is a powerful tool for the elucidation of the molecular mechanisms controlling fruit formation in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Frutas/genética , Regulação da Expressão Gênica de Plantas , Transcriptoma , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Homeostase , Regiões Promotoras Genéticas/genética , Genética Reversa , Sementes/genética , Sementes/crescimento & desenvolvimento , Análise de Sequência de RNA
9.
J Exp Bot ; 70(11): 2993-3006, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30854549

RESUMO

Fruits result from complex biological processes that begin soon after fertilization. Among these processes are cell division and expansion, accumulation of secondary metabolites, and an increase in carbohydrate biosynthesis. Later fruit ripening is accomplished by chlorophyll degradation and cell wall lysis. Fruit maturation is an essential step to optimize seed dispersal, and is controlled by a complex network of transcription factors and genetic regulators that are strongly influenced by phytohormones. Abscisic acid (ABA) and ethylene are the major regulators of ripening and senescence in both dry and fleshy fruits, as demonstrated by numerous ripening-defective mutants, effects of exogenous hormone application, and transcriptome analyses. While ethylene is the best characterized player in the final step of a fruit's life, ABA also has a key regulatory role, promoting ethylene production and acting as a stress-related hormone in response to drought and pathogen attack. In this review, we focus on the role of ABA and ethylene in relation to the interconnected biotic and abiotic phenomena that affect ripening and senescence. We integrate and discuss the most recent data available regarding these biological processes, which are crucial for post-harvest fruit conservation and for food safety.


Assuntos
Parede Celular/metabolismo , Frutas/crescimento & desenvolvimento , Interações Hospedeiro-Patógeno/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Ácido Abscísico/metabolismo , Fenômenos Fisiológicos Bacterianos , Etilenos/metabolismo , Frutas/metabolismo , Frutas/microbiologia , Fungos/fisiologia
10.
Planta ; 248(1): 257-265, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29687222

RESUMO

MAIN CONCLUSION: AtPPR4-mediated trans-splicing of plastid rps12 transcripts is essential for key embryo morphogenetic events such as development of cotyledons, determination of provascular tissue, and organization of the shoot apical meristem (SAM), but not for the formation of the protodermal layer. Members of the pentatricopeptide repeat (PPR) containing protein family have emerged as key regulators of the organelle post-transcriptional processing and to be essential for proper plant embryo development. In this study, we report the functional characterization of the AtPPR4 (At5g04810) gene encoding a plastid nucleoid PPR protein. In-situ hybridization analysis reveals the presence of AtPPR4 transcripts already at the transition stage of embryo development. As a consequence, embryos lacking the AtPPR4 protein arrest their development at the transition/early-heart stages and show defects in the determination of the provascular tissue and organization of SAM. This complex phenotype is due to the specific role of AtPPR4 in the trans-splicing of the plastid rps12 transcripts, as shown by northern and slot-blot hybridizations, and the consequent defect in 70S ribosome accumulation and plastid protein synthesis, in agreement with the role proposed for the maize orthologue, ZmPPR4.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/embriologia , Proteínas de Plantas/genética , Plastídeos/genética , Sementes/crescimento & desenvolvimento , Trans-Splicing , Arabidopsis/genética , Cotilédone/embriologia , Hibridização In Situ , Microscopia Confocal
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa