Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 53(14): 7608-21, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24971643

RESUMO

The Pt(IV) complexes trans-Pt(PEt3)2(Cl)3(R) 2 (R = Cl, Ph, 9-phenanthryl, 2-trifluoromethylphenyl, 4-trifluoromethylphenyl, 3-perylenyl) were prepared by chlorination of the Pt(II) complexes trans-Pt(PEt3)2(R)(Cl) 1 with Cl2(g) or PhICl2. Mixed bromo-chloro complexes trans,trans-Pt(PEt3)2(Cl)2(Br)(R) (R = 9-phenanthryl, 4-trifluoromethylphenyl), trans,cis-Pt(PEt3)2(Cl)2(Br)(4-trifluoromethylphenyl), trans,trans-Pt(PEt3)2(Br)2(Cl)(R) (R = 9-phenanthryl), and trans,cis-Pt(PEt3)2(Br)2(Cl)(4-trifluoromethylphenyl) were obtained by halide exchange or by oxidative addition of Br2 to 1 or Cl2 to trans-Pt(PEt3)2(R)(Br). Except for 2 (R = Ph, 4-trifluoromethylphenyl), all of the Pt(IV) complexes are photosensitive to UV light and undergo net halogen reductive elimination to give Pt(II) products, trans-Pt(PEt3)2(R)(X) (X = Cl, Br). Chlorine trapping experiments with alkenes indicate a reductive-elimination mechanism that does not involve molecular chlorine and is sensitive to steric effects at the Pt center. DFT calculations suggest a radical pathway involving (3)LMCT excited states. Emission from a triplet is observed in glassy 2-methyltetrahydrofuran at 77 K where photoreductive elimination is markedly slowed.

2.
Inorg Chem ; 52(7): 4113-9, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23484618

RESUMO

Pt(IV) complexes trans-Pt(PEt3)2(R)(Br)3 (R = Br, aryl and polycyclic aromatic fragments) photoeliminate molecular bromine with quantum yields as high as 82%. Photoelimination occurs both in the solid state and in solution. Calorimetry measurements and DFT calculations (PMe3 analogs) indicate endothermic and endergonic photoeliminations with free energies from 2 to 22 kcal/mol of Br2. Solution trapping experiments with high concentrations of 2,3-dimethyl-2-butene suggest a radical-like excited state precursor to bromine elimination.

3.
J Microbiol Methods ; 193: 106403, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34990644

RESUMO

Development of revolutionary sensitive biosensors for detecting the presence of harmful biological species in the environment is a necessity for countering disease outbreaks. This work examined the interaction of fluorescence-labeled antibody on amine functionalized gold nanoparticles (GNP) as a model system. The synthesized tetramethylrhodamine isothiocyanate (TRITC) labeled antibody-amine functionalized GNP interaction was characterized using UV-Vis spectroscopy and Fluorescent Microscopy imaging. Transmission Electron Microscopy (TEM) was also used to observe the morphology of the GNP. In contrast to TEM, the fluorescence microscopy imaging revealed the coating of the TRITC labeled antibody on the surface of the GNP. The signals were measured using a Photon Technology Inc. fluorometer at excitation of 541 nm and emission at 555 nm to 650 nm. Tests were conducted at near real-time with results obtained using the biosensor assay within 5 min. Results indicated that there was a shift of the wavelength from lower to higher wavelength (blue to red shift) when conjugated GNP (anti-E. coliO157:H7; IgY-TRITC-GNP) are compared to free GNP, a difference of about 28 nm. The GNP demonstrated a quenching capability when compared to the TRITC labeled antibody (degree of labeling of 15.41 mol dye per mole of IgY) using fluorometer. The lower and upper detection range of this method was found to be 103-105 CFU/mL with observed fluorescence of about 42,000 counts per seconds as against 24,000 counts per seconds that was observed when the specificity of the sensor was tested using Salmonella enterica.


Assuntos
Técnicas Biossensoriais , Escherichia coli O157 , Nanopartículas Metálicas , Aminas , Técnicas Biossensoriais/métodos , Ouro/química , Nanopartículas Metálicas/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa