Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Neurosci ; 44(11)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38286627

RESUMO

Dopamine neurons play crucial roles in pleasure, reward, memory, learning, and fine motor skills and their dysfunction is associated with various neuropsychiatric diseases. Dopamine receptors are the main target of treatment for neurologic and psychiatric disorders. Antipsychotics that antagonize the dopamine D2 receptor (DRD2) are used to alleviate the symptoms of these disorders but may also sometimes cause disabling side effects such as parkinsonism (catalepsy in rodents). Here we show that GPR143, a G-protein-coupled receptor for L-3,4-dihydroxyphenylalanine (L-DOPA), expressed in striatal cholinergic interneurons enhances the DRD2-mediated side effects of haloperidol, an antipsychotic agent. Haloperidol-induced catalepsy was attenuated in male Gpr143 gene-deficient (Gpr143-/y ) mice compared with wild-type (Wt) mice. Reducing the endogenous release of L-DOPA and preventing interactions between GPR143 and DRD2 suppressed the haloperidol-induced catalepsy in Wt mice but not Gpr143-/y mice. The phenotypic defect in Gpr143-/y mice was mimicked in cholinergic interneuron-specific Gpr143-/y (Chat-cre;Gpr143flox/y ) mice. Administration of haloperidol increased the phosphorylation of ribosomal protein S6 at Ser240/244 in the dorsolateral striatum of Wt mice but not Chat-cre;Gpr143flox/y mice. In Chinese hamster ovary cells stably expressing DRD2, co-expression of GPR143 increased cell surface expression level of DRD2, and L-DOPA application further enhanced the DRD2 surface expression. Shorter pauses in cholinergic interneuron firing activity were observed after intrastriatal stimulation in striatal slice preparations from Chat-cre;Gpr143flox/y mice compared with those from Wt mice. Together, these findings provide evidence that GPR143 regulates DRD2 function in cholinergic interneurons and may be involved in parkinsonism induced by antipsychotic drugs.


Assuntos
Antipsicóticos , Transtornos Parkinsonianos , Receptores de Neurotransmissores , Humanos , Camundongos , Masculino , Animais , Cricetinae , Haloperidol/farmacologia , Levodopa/efeitos adversos , Catalepsia/induzido quimicamente , Células CHO , Cricetulus , Antipsicóticos/efeitos adversos , Interneurônios/metabolismo , Colinérgicos/farmacologia , Proteínas do Olho/metabolismo , Glicoproteínas de Membrana/metabolismo
2.
J Neurochem ; 165(2): 177-195, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36807226

RESUMO

Dopamine (DA) is involved in neurological and physiological functions such as motor control. L-3,4-dihydroxyphenylalanine (L-DOPA), a precursor of DA, is conventionally believed to be an inert amino acid precursor of DA, and its major therapeutic effects in Parkinson's disease (PD) are mediated through its conversion to DA. On the contrary, accumulating evidence suggests that L-DOPA itself is a neurotransmitter. We here show that L-DOPA potentiates DA D2 receptor (DRD2) signaling through GPR143, the gene product of X-linked ocular albinism 1, a G-protein-coupled receptor for L-DOPA. In Gpr143-gene-deficient (Gpr143-/y ) mice, quinpirole, a DRD2/DRD3 agonist, -induced hypolocomotion was attenuated compared to wild-type (WT) mice. Administration of non-effective dose of L-DOPA methyl ester augmented the quinpirole-induced hypolocomotion in WT mice but not in Gpr143-/y mice. In cells co-expressing GPR143 and DRD2, L-DOPA enhanced the interaction between GPR143 and DRD2 and augmented quinpirole-induced decrease in cAMP levels. This augmentation by L-DOPA was not observed in cells co-expressing GPR143 and DRD1 or DRD3. Chimeric analysis in which the domain of GPR143 was replaced with GPR37 revealed that GPR143 interacted with DRD2 at the fifth transmembrane domain. Intracerebroventricular administration of a peptide that disrupted the interaction mitigated quinpirole-induced behavioral changes in WT mice but not in Gpr143-/y mice. These findings provide evidence that coupling between GPR143 and DRD2 is required for selective DRD2 modulation by L-DOPA in the dorsal striatum.


Assuntos
Levodopa , Doença de Parkinson , Receptores de Dopamina D2 , Animais , Camundongos , Corpo Estriado/metabolismo , Dopamina/metabolismo , Levodopa/farmacologia , Doença de Parkinson/metabolismo , Quimpirol/farmacologia , Quimpirol/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
3.
Stem Cells ; 40(2): 215-226, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35257172

RESUMO

Neurogenesis occurs in the hippocampus throughout life and is implicated in various physiological brain functions such as memory encoding and mood regulation. L-3,4-dihydroxyphenylalanine (L-DOPA) has long been believed to be an inert precursor of dopamine. Here, we show that L-DOPA and its receptor, GPR143, the gene product of ocular albinism 1, regulate neurogenesis in the dentate gyrus (DG) in a dopamine-independent manner. L-DOPA at concentrations far lower than that of dopamine promoted proliferation of neural stem and progenitor cells in wild-type mice under the inhibition of its conversion to dopamine; this effect was abolished in GPR143 gene-deficient (Gpr143-/y) mice. Hippocampal neurogenesis decreased during development and adulthood, and exacerbated depression-like behavior was observed in adult Gpr143-/y mice. Replenishment of GPR143 in the DG attenuated the impaired neurogenesis and depression-like behavior. Our findings suggest that L-DOPA through GPR143 modulates hippocampal neurogenesis, thereby playing a role in mood regulation in the hippocampus.


Assuntos
Dopamina , Levodopa , Animais , Hipocampo/metabolismo , Levodopa/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
4.
J Pharmacol Sci ; 152(3): 178-181, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37257945

RESUMO

Methylphenidate (MPH) and methamphetamine (METH) are the current treatments of choice for attention deficit/hyperactivity disorder. We previously reported that METH induces the release of dopamine (DA) and of the neurotransmitter candidate L-3,4-dihydroxyphenylalanine (L-DOPA). In contrast, we here found that MPH increased the DA release while it did not affect the L-DOPA release from the dorsolateral striatum. Nevertheless, MPH-induced hyperlocomotion was reduced in Gpr143 (L-DOPA receptor) gene-deficient (Gpr143-/y) mice. The rewarding effect and increased c-fos expression induced by MPH were also attenuated in Gpr143-/y mice. Together, these findings suggest that GPR143 is involved in the acute and chronic actions of MPH.


Assuntos
Estimulantes do Sistema Nervoso Central , Metanfetamina , Metilfenidato , Camundongos , Animais , Metilfenidato/farmacologia , Levodopa/farmacologia , Receptores de Neurotransmissores , Dopamina/metabolismo , Metanfetamina/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia
5.
Biol Pharm Bull ; 46(7): 869-873, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37394637

RESUMO

Adrenergic receptors (ADRs) are widely distributed in the peripheral and central nervous systems. We previously reported that L-3,4-dihydroxyphenylalanine (L-DOPA), the precursor of dopamine, sensitizes adrenergic α1 receptor (ADRA1) through a G protein-coupled receptor GPR143. Chimeric analysis, in which the transmembrane (TM) domains of GPR143 were replaced with those of GPR37, revealed that the second TM region was essential for the potentiation of phenylephrine-induced extracellular signal-regulated kinase (ERK) phosphorylation by GPR143. In HEK293T cells expressing ADRA1B, phenylephrine-induced ERK phosphorylation was augmented by the co-expression of GPR143, compared to the mock vector. Immunoprecipitation analysis revealed that a synthetic transactivator of the transcription peptide fused with TM2 of GPR143 (TAT-TM2) disrupts the interaction between GPR143 and ADRA1B. This TAT-TM2 peptide suppressed the augmentation of phenylephrine-induced ERK phosphorylation by GPR143 in HEK293T cells co-expressing ADRA1B and GPR143. These results indicate that the interaction between GPR143 and ADRA1B is required for the potentiation of ADRA1B-mediated signaling by GPR143. The TM2 region of GPR143 is a crucial dimeric interface for the functional coupling between ADRA1B and GPR143.


Assuntos
Adrenérgicos , Di-Hidroxifenilalanina , Glicoproteínas de Membrana , Receptores Adrenérgicos alfa 1 , Humanos , MAP Quinases Reguladas por Sinal Extracelular , Proteínas do Olho , Células HEK293 , Glicoproteínas de Membrana/metabolismo , Fenilefrina/farmacologia , Receptores Adrenérgicos alfa 1/metabolismo
6.
J Pharmacol Sci ; 148(2): 214-220, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35063136

RESUMO

Pulmonary hypertension (PH) is a severe and progressive disease that causes elevated right ventricular systolic pressure, right ventricular hypertrophy and ultimately right heart failure. However, the underlying pathophysiologic mechanisms are poorly understood. We previously showed that 3,4-l-dihydroxylphenyalanine (DOPA) sensitizes vasomotor response to sympathetic tone via coupling between the adrenergic receptor alpha1 (ADRA1) and a G protein-coupled receptor 143 (GPR143), a DOPA receptor. We investigated whether DOPA similarly enhances ADRA1-mediated contraction in pulmonary arteries isolated from rats, and whether GPR143 is involved in the PH pathogenesis. Pretreating the isolated pulmonary arteries with DOPA 1 µM enhanced vasoconstriction in response to phenylephrine, an ADRA1 agonist, but not to U-46619, a thromboxane A2 agonist or endothelin-1. We generated Gpr143 gene-deficient (Gpr143-/y) rats, and confirmed that DOPA did not augment phenylephrine-induced contractile response in Gpr143-/y rat pulmonary arteries. We utilized a rat model of monocrotaline (MCT)-induced PH. In the MCT model, the right ventricular systolic pressure was attenuated in the Gpr143-/y rats than in WT rats. Phenylephrine-induced cell migration and proliferation were also suppressed in Gpr143-/y pulmonary artery smooth muscle cells than in WT cells. Our result suggests that GPR143 is involved in the PH pathogenesis in the rat models of PH.


Assuntos
Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/genética , Monocrotalina/efeitos adversos , Receptores Acoplados a Proteínas G/fisiologia , Receptores de Neurotransmissores/genética , Sístole , Função Ventricular Direita/genética , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Animais , Modelos Animais de Doenças , Insuficiência Cardíaca/etiologia , Hipertrofia Ventricular Direita/etiologia , Técnicas In Vitro , Masculino , Artéria Pulmonar/fisiologia , Ratos Sprague-Dawley , Receptores Adrenérgicos alfa 1/fisiologia , Vasoconstrição/efeitos dos fármacos , Vasoconstrição/genética , Disfunção Ventricular Direita/etiologia
7.
J Pharmacol Sci ; 145(2): 198-201, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33451754

RESUMO

The orexinergic system plays a significant role in regulating proper sleep/wake maintenance. Dual orexin receptor antagonist (DORA) is widely prescribed for insomnia symptoms. The antagonist acts on orexin 1 and 2 receptors located in certain brain areas, including the locus coeruleus and dorsal raphe. Nevertheless, its effects on monoamine-related gene expression remain unclear. Here, we measured the expression levels of monoamine-related genes in DORA-treated mice. DORA treatment significantly affected overall levels of noradrenalin transporter/monoamine oxidases A mRNA expression in the hippocampus. Our findings suggest that DORA contributes to noradrenalin-related gene expression regulation in the central nervous system.


Assuntos
Azepinas/farmacologia , Benzimidazóis/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Hipocampo/metabolismo , Monoaminoxidase/genética , Monoaminoxidase/metabolismo , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/genética , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Antagonistas dos Receptores de Orexina/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Animais , Masculino , Camundongos Endogâmicos C57BL
8.
Genes Cells ; 24(1): 31-40, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30375127

RESUMO

Parkinson's disease (PD) is a common neurodegenerative disorder characterized by slow and progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc). Levodopa (l-Dopa), the current main treatment for PD, supplies dopamine, but it does not prevent neurodegeneration. There is thus no promising remedy for PD. Recent in vitro study showed the increase in the phosphorylation levels of Collapsin Response Mediator Protein 2 (CRMP2) is involved in dopaminergic axon degeneration. In the present study, we report elevation of CRMP2 phosphorylation in dopaminergic neurons in SNc after challenge with the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a common model for PD. Genetic suppression of CRMP2 phosphorylation by mutation of the obligatory Cyclin-dependent kinase 5 (Cdk5)-targeted serine-522 site prevented axonal degradation in the nigrostriatal pathway of transgenic mice. As a result, the degree of MPTP-induced motor impairment in the rotarod test was suppressed. These results suggest that suppression of CRMP2 phosphorylation may be a novel therapeutic target for PD.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas do Tecido Nervoso/genética , Doença de Parkinson/genética , Supressão Genética , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/análogos & derivados , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Microglia/patologia , Atividade Motora , Neostriado/patologia , Degeneração Neural/patologia , Doença de Parkinson/patologia , Doença de Parkinson/fisiopatologia , Fosforilação , Substância Negra/patologia
9.
J Pharmacol Sci ; 144(1): 57-59, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32624301

RESUMO

Some psychiatric diseases are associated with disruptions in the circadian clock system. Ziprasidone (ZIP), a second-generation antipsychotic, is widely used for psychiatry-related pharmacotherapy but its mechanism has not been clearly elucidated. We measured clock gene fluctuation patterns in the hippocampus and the amygdala in ZIP-treated mice. ZIP significantly increased Per1, Per2, and Bmal1 mRNA 2 h after the lights were turned off (ZT14) in the hippocampus, but not in the amygdala. These results suggest that ZIP might affect clock gene regulation, which could represent the pathway underlying symptom amelioration.


Assuntos
Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Antipsicóticos/farmacologia , Relógios Biológicos/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Expressão Gênica/efeitos dos fármacos , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Piperazinas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tiazóis/farmacologia , Tonsila do Cerebelo/metabolismo , Animais , Hipocampo/metabolismo , Luz , Masculino , Camundongos Endogâmicos C57BL
10.
J Pharmacol Sci ; 144(2): 89-93, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32763057

RESUMO

l-3,4-dihydroxyphenylalanine (l-DOPA) is a candidate neurotransmitter. l-DOPA is released by nicotine through nicotinic receptors. Recently, G-protein coupled receptor GPR143, was identified as a receptor for l-DOPA. In this study, genetic association studies between GPR143 genetic polymorphisms and smoking behaviors revealed that the single-nucleotide polymorphism rs6640499, in the GPR143 gene, was associated with traits of smoking behaviors in Japanese individuals. In Gpr143 gene-deficient mice, nicotine-induced hypolocomotion and rewarding effect were attenuated compared to those in wild-type mice. Our findings suggest the involvement of GPR143 in the smoking behaviors.


Assuntos
Proteínas do Olho/genética , Deleção de Genes , Estudos de Associação Genética , Glicoproteínas de Membrana/genética , Nicotina/efeitos adversos , Polimorfismo de Nucleotídeo Único , Receptores Acoplados a Proteínas G/genética , Receptores de Neurotransmissores/genética , Reforço Psicológico , Transtornos Relacionados ao Uso de Substâncias/genética , Animais , Povo Asiático , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Índice de Gravidade de Doença
11.
Neurobiol Dis ; 132: 104603, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31494281

RESUMO

Alzheimer's disease (AD) is an incurable neurodegenerative disease characterized by memory loss and neurotoxic amyloid beta (Aß) plaques accumulation. Numerous pharmacological interventions targeting Aß plaques accumulation have failed to alleviate AD. Also, the pathological alterations in AD start years before the onset of clinical symptoms. To identify proteins at play during the early stage of AD, we conducted proteomic analysis of the hippocampus of young AppNL-F mice model of AD at the preclinical phase of the disease. This was followed by interactome ranking of the proteome into hubs that were further validated in vivo using immunoblot analysis. We also performed double-immunolabeling of these hub proteins and Aß to quantify colocalization. Behavioral analysis revealed no significant difference in memory performance between 8-month-old AppNL-F and control mice. The upregulation and downregulation of several proteins were observed in the AppNL-F mice compared to control. These proteins corresponded to pathways and processes related to Aß clearance, inflammatory-immune response, transport, mitochondrial metabolism, and glial cell proliferation. Interactome analysis revealed several proteins including DLGP5, DDX49, CCDC85A, ADCY6, HEPACAM, HCN3, PPT1 and TNPO1 as essential proteins in the AppNL-F interactome. Validation by immunoblot confirmed the over-expression of these proteins except HCN3 in the early-stage AD mice hippocampus. Immunolabeling revealed a significant increase in ADCY6/Aß and HEPACAM/Aß colocalized puncta in AppNL-F mice compared to WT. These data suggest that these proteins may be involved in the early stage of AD. Our work suggests new targets and biomarkers for AD diagnosis and therapeutic intervention.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Hipocampo/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
12.
J Pharmacol Sci ; 141(1): 41-48, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31606330

RESUMO

Neurite outgrowth is a complex differentiation process regulated by external and/or internal mechanisms. Among external mechanisms, G-protein coupled receptors (GPCRs) have been implicated in this process, but the pathways involved are not fully understood. L-3,4-dihydroxyphenylalanine (l-DOPA) is considered to be inert by itself, and to relieve Parkinson's disease through its conversion to dopamine. We have proposed that l-DOPA acts as a neurotransmitter. GPR143, the gene product of ocular albinism 1 (OA1), was identified as a receptor for l-DOPA. OA1 is an X-linked disorder characterized by all typical visual anomalies associated with hypopigmentation and optic misrouting, resulting in severe reduction of visual acuity. However, the molecular basis for this phenotype remains unknown. To study the function of GPR143, we investigated the phenotypic effect of overexpression of GPR143 in pheochromocytoma (PC12) cells treated with nerve growth factor. Overexpression of mouse GPR143 inhibited neurite outgrowth, and the effect was mitigated by l-DOPA cyclohexylester, an antagonist for l-DOPA. Furthermore, knockdown of G-protein Gα13 attenuated mouse GPR143 induced inhibition of neurite outgrowth. Human wild-type (wt) GPR143 also inhibited neurite outgrowth, but its mutants did not mimic the effect of wt GPR143. Our results provide a mechanism for axon guidance phenotype in ocular albinism 1.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Expressão Gênica , Crescimento Neuronal/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Animais , Camundongos , Mutação , Células PC12 , Ratos
13.
Circ J ; 80(11): 2388-2396, 2016 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-27666597

RESUMO

BACKGROUND: Extremely preterm infants frequently have patent ductus arteriosus (PDA). Recent recommendations include immediately beginning amino acid supplementation in extremely preterm infants. However, the effect of amino acids on closure of the ductus arteriosus (DA) remains unknown.Methods and Results:Aminogram results in human neonates at day 2 revealed that the plasma glutamate concentration was significantly lower in extremely preterm infants (<28 weeks' gestation) with PDA than in those without PDA and relatively mature preterm infants (28-29 weeks gestation). To investigate the effect of glutamate on DA closure, glutamate receptor expression in fetal rats was examined and it was found that the glutamate inotropic receptor, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) type subunit 1 (GluR1), mRNA was highly expressed in the DA compared to the aorta on gestational day 19 (preterm) and gestational day 21 (term). GluR1 proteins were co-localized with tyrosine hydroxylase-positive autonomic nerve terminals in the rat and human DA. Intraperitoneal administration of glutamate increased noradrenaline production in the rat DA. A whole-body freezing method demonstrated that glutamate administration induced DA contraction in both preterm (gestational day 20) and term rat fetuses. Glutamate-induced DA contraction was attenuated by the calcium-sensitive GluR receptor antagonist, NASPM, or the adrenergic receptor α1 blocker, prazosin. CONCLUSIONS: These data suggest that glutamate induces DA contraction through GluR-mediated noradrenaline production. Supplementation of glutamate might help to prevent PDA in extremely preterm infants. (Circ J 2016; 80: 2388-2396).


Assuntos
Canal Arterial/fisiologia , Ácido Glutâmico/farmacologia , Contração Miocárdica/efeitos dos fármacos , Norepinefrina/biossíntese , Receptores de AMPA/metabolismo , Animais , Humanos , Recém-Nascido , Ratos , Ratos Wistar
14.
J Pharmacol Sci ; 132(1): 109-112, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27622543

RESUMO

Through its conversion to dopamine by aromatic l-amino acid decarboxylase (AADC), l-3,4-dihydroxyphenylalanine (l-DOPA) replenishes depleted brain dopamine in Parkinson's disease patients. We recently identified GPR143 as a candidate receptor for l-DOPA. In this study, we investigated the behavioral actions of l-DOPA in wild type (wt) and Gpr143-deficient mice. l-DOPA dose-dependently (10-100 mg/kg, i.p.) induced ptosis under treatment with 3-hydroxybenzylhydrazine, a centrally acting AADC inhibitor. This effect was not mimicked by 3-O-methyldopa. l-DOPA-induced ptosis in Gpr143-deficient mice to a similar extent as in wt mice. These results suggest that l-DOPA induces ptosis in a GPR143-independent fashion in mice.


Assuntos
Blefaroptose/induzido quimicamente , Levodopa , Animais , Comportamento Animal/efeitos dos fármacos , Blefaroptose/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
15.
Addict Biol ; 20(4): 724-32, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25065832

RESUMO

Most opioid receptor agonists have abuse potential, and the rewarding effects of opioids can be reduced in the presence of pain. While each of the enantiomers of pentazocine has a differential pharmacologic profile, (±)-pentazocine has been used clinically for the treatment of pain. However, little information is available regarding which components of pentazocine are associated with its rewarding effects, and whether the (±)-pentazocine-induced rewarding effects can be suppressed under pain. Therefore, the present study was performed to investigate the effects of pain on the acquisition of the rewarding effects of (±)-pentazocine, and to examine the mechanism of the rewarding effects of (±)-pentazocine using the conditioned place preference paradigm. (±)-Pentazocine and (-)-pentazocine, but not (+)-pentazocine, produced significant rewarding effects. Even though the rewarding effects induced by (±)-pentazocine were significantly suppressed under pain induced by formalin, accompanied by increase of preprodynorphin mRNA levels in the nucleus accumbens, a high dose of (±)-pentazocine produced significant rewarding effects under pain. In the normal condition, (±)-pentazocine-induced rewarding effects were blocked by a low dose of naloxone, whereas the rewarding effects induced by high doses of pentazocine under pain were suppressed by naltrindole (a δ-opioid receptor antagonist). Interestingly, (±)-pentazocine did not significantly affect dopamine levels in the nucleus accumbens. These findings suggest that the rewarding effects of (-)-pentazocine may contribute to the abuse potential of (±)-pentazocine through µ- as well as δ-opioid receptors, without robust activation of the mesolimbic dopaminergic system. We also found that neural adaptations can reduce the abuse potential of (±)-pentazocine under pain.


Assuntos
Analgésicos Opioides/farmacologia , Dor/fisiopatologia , Pentazocina/farmacologia , Receptores Opioides delta/fisiologia , Receptores Opioides mu/fisiologia , Recompensa , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/química , Análise de Variância , Animais , Condicionamento Psicológico/efeitos dos fármacos , Relação Dose-Resposta a Droga , Isomerismo , Masculino , Naloxona/farmacologia , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Pentazocina/administração & dosagem , Pentazocina/química , Ratos , Receptores Opioides delta/efeitos dos fármacos , Receptores Opioides mu/efeitos dos fármacos
16.
J Pharmacol Sci ; 126(1): 14-20, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25185585

RESUMO

l-3,4-Dihydroxyphenylalanine (DOPA) is the metabolic precursor of dopamine, and the single most effective agent in the treatment of Parkinson's disease. One problem with DOPA therapy for Parkinson's disease is its cardiovascular side effects including hypotension and syncope, the underlying mechanisms of which are largely unknown. We proposed that DOPA is a neurotransmitter in the central nervous system, but specific receptors for DOPA had not been identified. Recently, the gene product of ocular albinism 1 (OA1) was shown to possess DOPA-binding activity. It was unknown, however, whether or not OA1 is responsible for the actions of DOPA itself. Immunohistochemical examination revealed that OA1 was expressed in the nucleus tractus solitarii (NTS). OA1-positive cells adjacent to tyrosine hydroxylase-positive cell bodies and nerve fibers were detected in the depressor sites of the NTS. OA1 knockdown using oa1-specific shRNA-adenovirus vectors in the NTS reduced the expression levels of OA1 in the NTS. The prior injection of the shRNA against OA1 suppressed the depressor and bradycardic responses to DOPA but not to glutamate in the NTS of anesthetized rats. Thus OA-1 is a functional receptor of DOPA in the NTS, which warrants reexamination of the mechanisms for the therapeutic and untoward actions of DOPA.


Assuntos
Di-Hidroxifenilalanina/efeitos adversos , Di-Hidroxifenilalanina/farmacologia , Proteínas do Olho/metabolismo , Proteínas do Olho/fisiologia , Hipotensão/induzido quimicamente , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/fisiologia , Receptores de Droga/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Síncope/induzido quimicamente , Animais , Barorreflexo , Di-Hidroxifenilalanina/metabolismo , Di-Hidroxifenilalanina/uso terapêutico , Humanos , Neurotransmissores , Doença de Parkinson/tratamento farmacológico , Ligação Proteica , Ratos , Núcleo Solitário/metabolismo
17.
J Neurochem ; 125(5): 747-55, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23565710

RESUMO

Benzodiazepines are commonly used as sedatives, sleeping aids, and anti-anxiety drugs. However, chronic treatment with benzodiazepines is known to induce dependence, which is considered related to neuroplastic changes in the mesolimbic system. This study investigated the involvement of K(+) -Cl(-) co-transporter 2 (KCC2) in the sensitization to morphine-induced hyperlocomotion after chronic treatment with zolpidem [a selective agonist of γ-aminobutyric acid A-type receptor (GABAA R) α1 subunit]. In this study, chronic treatment with zolpidem enhanced morphine-induced hyperlocomotion, which is accompanied by the up-regulation of KCC2 in the limbic forebrain. We also found that chronic treatment with zolpidem induced the down-regulation of protein phosphatase-1 (PP-1) as well as the up-regulation of phosphorylated protein kinase C γ (pPKCγ). Furthermore, PP-1 directly associated with KCC2 and pPKCγ, whereas pPKCγ did not associate with KCC2. On the other hand, pre-treatment with furosemide (a KCC2 inhibitor) suppressed the enhancing effects of zolpidem on morphine-induced hyperlocomotion. These results suggest that the mesolimbic dopaminergic system could be amenable to neuroplastic change through a pPKCγ-PP-1-KCC2 pathway by chronic treatment with zolpidem.


Assuntos
Sistema Límbico/efeitos dos fármacos , Sistema Límbico/metabolismo , Morfina/administração & dosagem , Agitação Psicomotora/metabolismo , Piridinas/administração & dosagem , Simportadores/fisiologia , Animais , Sinergismo Farmacológico , Masculino , Camundongos , Camundongos Endogâmicos ICR , Simportadores/biossíntese , Resultado do Tratamento , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia , Zolpidem , Cotransportadores de K e Cl-
18.
J Pharmacol Exp Ther ; 347(1): 91-9, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23902939

RESUMO

Reducing the side effects of pain treatment is one of the most important strategies for improving the quality of life of cancer patients. However, little is known about the mechanisms that underlie these side effects, especially constipation induced by opioid receptor agonists; i.e., do they involve naloxonazine-sensitive versus -insensitive sites or central-versus-peripheral µ-opioid receptors? The present study was designed to investigate the mechanisms of µ-opioid receptor agonist-induced constipation (i.e., the inhibition of gastrointestinal transit and colonic expulsion) that are antagonized by the peripherally restricted opioid receptor antagonist naloxone methiodide and naloxonazine in mice. Naloxonazine attenuated the fentanyl-induced inhibition of gastrointestinal transit more potently than the inhibition induced by morphine or oxycodone. Naloxone methiodide suppressed the oxycodone-induced inhibition of gastrointestinal transit more potently than the inhibition induced by morphine, indicating that µ-opioid receptor agonists induce the inhibition of gastrointestinal transit through different mechanisms. Furthermore, we found that the route of administration (intracerebroventricular, intrathecally, and/or intraperitoneally) of naloxone methiodide differentially influenced the suppressive effect on the inhibition of colorectal transit induced by morphine, oxycodone, and fentanyl. These results suggest that morphine, oxycodone, and fentanyl induce constipation through different mechanisms (naloxonazine-sensitive versus naloxonazine-insensitive sites and central versus peripheral opioid receptors), and these findings may help us to understand the characteristics of the constipation induced by each µ-opioid receptor agonist and improve the quality of life by reducing constipation in patients being treated for pain.


Assuntos
Analgésicos Opioides/metabolismo , Analgésicos Opioides/toxicidade , Constipação Intestinal/metabolismo , Trânsito Gastrointestinal/fisiologia , Receptores Opioides mu/fisiologia , Animais , Constipação Intestinal/induzido quimicamente , Trânsito Gastrointestinal/efeitos dos fármacos , Injeções Intraventriculares , Masculino , Camundongos , Camundongos Endogâmicos ICR , Antagonistas de Entorpecentes/administração & dosagem , Antagonistas de Entorpecentes/metabolismo , Técnicas de Cultura de Órgãos , Receptores Opioides mu/agonistas , Receptores Opioides mu/metabolismo
19.
Neural Regen Res ; 17(4): 881-886, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34472489

RESUMO

In the central nervous system, the A6 noradrenaline (NA) and the B3 serotonin (5-HT) cell groups are well-recognized players in the descending antinociceptive system, while other NA/5-HT cell groups are not well characterized. A5/A7 NA and B2 5-HT cells project to the spinal horn and form descending pathways. We recorded G-CaMP6 green fluorescence signal intensities in the A5/A7 NA and the B2 5-HT cell groups of awake mice in response to acute tail pinch stimuli, acute heat stimuli, and in the context of a non-noxious control test, using fiber photometry with a calcium imaging system. We first introduced G-CaMP6 in the A5/A7 NA or B2 5-HT neuronal soma, using transgenic mice carrying the tetracycline-controlled transactivator transgene under the control of either a dopamine ß-hydroxylase or a tryptophan hydroxylase-2 promoters and by the site-specific injection of adeno-associated virus (AAV-TetO(3G)-G-CaMP6). After confirming the specific expression patterns of G-CaMP6, we recorded G-CaMP6 green fluorescence signals in these sites in awake mice in response to acute nociceptive stimuli. G-CaMP6 fluorescence intensity in the A5, A7, and B2 cell groups was rapidly increased in response to acute nociceptive stimuli and soon after, it returned to baseline fluorescence intensity. This was not observed in the non-noxious control test. The results indicate that acute nociceptive stimuli rapidly increase the activities of A5/A7 NA or B2 5-HT neurons but the non-noxious stimuli do not. The present study suggests that A5/A7 NA or B2 5-HT neurons play important roles in nociceptive processing in the central nervous system. We suggest that A5/A7/B2 neurons may be new therapeutic targets. All performed procedures were approved by the Institutional Animal Use Committee of Kagoshima University (MD17105) on February 22, 2018.

20.
Neurosci Res ; 170: 370-375, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32896531

RESUMO

Nicotine exerts its reinforcing actions by activating nicotinic acetylcholine receptors (nAChRs), but the detailed mechanisms remain unclear. Nicotine releases 3, 4-dihydroxyphenylalanine (DOPA), a neurotransmitter candidate in the central nervous system. Here, we investigated the distribution of GPR143, a receptor of DOPA, and nAChR subunits in the nigrostriatal and mesolimbic regions. We found GPR143 mRNA-positive cells in the striatum and nucleus accumbens. Some of them were surrounded by tyrosine hydroxylase (TH)-immunoreactive fibers. There were some GPR143 mRNA-positive cells coexpressing TH, and nAChR subunit α4 or α7 in the substantia nigra and ventral tegmental area. These findings suggest that DOPA-GPR143 signaling may be involved in the nicotine action in the nigrostriatal and mesolimbic dopaminergic systems.


Assuntos
Receptores Nicotínicos , Di-Hidroxifenilalanina , Nicotina/farmacologia , RNA Mensageiro , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Substância Negra/metabolismo , Área Tegmentar Ventral/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa