Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Biol Sci ; 282(1812): 20151063, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26180070

RESUMO

Predicting the impacts of non-native species remains a challenge. As populations of a species are genetically and phenotypically variable, the impact of non-native species on local taxa could crucially depend on population-specific traits and adaptations of both native and non-native species. Bitterling fishes are brood parasites of unionid mussels and unionid mussels produce larvae that parasitize fishes. We used common garden experiments to measure three key elements in the bitterling-mussel association among two populations of an invasive mussel (Anodonta woodiana) and four populations of European bitterling (Rhodeus amarus). The impact of the invasive mussel varied between geographically distinct R. amarus lineages and between local populations within lineages. The capacity of parasitic larvae of the invasive mussel to exploit R. amarus was higher in a Danubian than in a Baltic R. amarus lineage and in allopatric than in sympatric R. amarus populations. Maladaptive oviposition by R. amarus into A. woodiana varied among populations, with significant population-specific consequences for R. amarus recruitment. We suggest that variation in coevolutionary states may predispose different populations to divergent responses. Given that coevolutionary relationships are ubiquitous, population-specific attributes of invasive and native populations may play a critical role in the outcome of invasion. We argue for a shift from a species-centred to population-centred perspective of the impacts of invasions.


Assuntos
Anodonta/fisiologia , Aprendizagem da Esquiva , Cyprinidae/fisiologia , Cyprinidae/parasitologia , Espécies Introduzidas , Oviposição , Animais , Anodonta/genética , Anodonta/crescimento & desenvolvimento , Europa (Continente) , Feminino , Interações Hospedeiro-Parasita , Larva/genética , Larva/crescimento & desenvolvimento , Larva/fisiologia , Reprodução
2.
PLoS One ; 8(7): e70157, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23894606

RESUMO

Aphanomyces astaci, the crayfish plague pathogen, first appeared in Europe in the mid-19(th) century and is still responsible for mass mortalities of native European crayfish. The spread of this parasite across the continent is especially facilitated by invasive North American crayfish species that serve as its reservoir. In France, multiple cases of native crayfish mortalities have been suggested to be connected with the presence of the signal crayfish Pacifastacus leniusculus, which is highly abundant in the country. It shares similar habitats as the native white-clawed crayfish Austropotamobius pallipes and, when infected, the signal crayfish might therefore easily transmit the pathogen to the native species. We investigated the prevalence of A. astaci in French signal crayfish populations to evaluate the danger they represent to local populations of native crayfish. Over 500 individuals of Pacifastacus leniusculus from 45 French populations were analysed, plus several additional individuals of other non-indigenous crayfish species Orconectes limosus, O. immunis and Procambarus clarkii. Altogether, 20% of analysed signal crayfish tested positive for Aphanomyces astaci, and the pathogen was detected in more than half of the studied populations. Local prevalence varied significantly, ranging from 0% up to 80%, but wide confidence intervals suggest that the number of populations infected by A. astaci may be even higher than our results show. Analysis of several individuals of other introduced species revealed infections among two of these, O. immunis and P. clarkii. Our results confirm that the widespread signal crayfish serves as a key reservoir of Aphanomyces astaci in France and therefore represents a serious danger to native crayfish species, especially the white-clawed crayfish. The prevalence in other non-indigenous crayfish should also be investigated as they likely contribute to pathogen transmission in the country.


Assuntos
Aphanomyces/isolamento & purificação , Astacoidea/classificação , Astacoidea/parasitologia , Animais , Aphanomyces/genética , Aphanomyces/fisiologia , DNA de Algas/genética , França , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa