Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Infect Immun ; : e0024924, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990046

RESUMO

Ticks are important vectors of disease, particularly in the context of One Health, where tick-borne diseases (TBDs) are increasingly prevalent worldwide. TBDs often involve co-infections, where multiple pathogens co-exist in a single host. Patients with chronic Lyme disease often have co-infections with other bacteria or parasites. This study aimed to create a co-infection model with Borrelia afzelii and tick-borne encephalitis virus (TBEV) in C3H mice and to evaluate symptoms, mortality, and pathogen level compared to single infections. Successful co-infection of C3H mice with B. afzelii and TBEV was achieved. Outcomes varied, depending on the timing of infection. When TBEV infection followed B. afzelii infection by 9 days, TBEV symptoms worsened and virus levels increased. Conversely, mice infected 21 days apart with TBEV showed milder symptoms and lower mortality. Simultaneous infection resulted in mild symptoms and no deaths. However, our model did not effectively infect ticks with TBEV, possibly due to suboptimal dosing, highlighting the challenges of replicating natural conditions. Understanding the consequences of co-infection is crucial, given the increasing prevalence of TBD. Co-infected individuals may experience exacerbated symptoms, highlighting the need for a comprehensive understanding through refined animal models. This study advances knowledge of TBD and highlights the importance of exploring co-infection dynamics in host-pathogen interactions.

2.
Mol Ecol ; 32(16): 4660-4676, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37366236

RESUMO

Most tick-borne pathogens (TBPs) are secondarily acquired by ticks during feeding on infected hosts, which imposes 'priority effect' constraints, as arrival order influences the establishment of new species in a microbial community. Here we tested whether once acquired, TBPs contribute to bacterial microbiota functioning by increasing community stability. For this, we used Hyalomma marginatum and Rhipicephalus bursa ticks collected from cattle in different locations of Corsica and combined 16S rRNA amplicon sequencing and co-occurrence network analysis, with high-throughput pathogen detection, and in silico removal of nodes to test for impact of rickettsial pathogens on network properties. Despite its low centrality, Rickettsia showed preferential connections in the networks, notably with a keystone taxon in H. marginatum, suggesting facilitation of Rickettsia colonisation by the keystone taxon. In addition, conserved patterns of community assembly in both tick species were affected by Rickettsia removal, suggesting that privileged connections of Rickettsia in the networks make this taxon a driver of community assembly. However, Rickettsia removal had minor impact on the conserved 'core bacterial microbiota' of H. marginatum and R. bursa. Interestingly, networks of the two tick species with Rickettsia have similar node centrality distribution, a property that is lost after Rickettsia removal, suggesting that this taxon drives specific hierarchical interactions between bacterial microbes in the microbiota. The study indicates that tick-borne Rickettsia play a significant role in the tick bacterial microbiota, despite their low centrality. These bacteria are influential and contribute to the conservation of the 'core bacterial microbiota' while also promoting community stability.


Assuntos
Ixodidae , Rhipicephalus , Rickettsia , Animais , Bovinos , Rhipicephalus/genética , RNA Ribossômico 16S/genética , Rickettsia/genética , Ixodidae/genética , Ixodidae/microbiologia , França
3.
Microb Ecol ; 86(4): 2400-2413, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37249591

RESUMO

Bacterial microbiota play an important role in the fitness of arthropods, but the bacterial microflora in the parasitic mite Dermanyssus gallinae is only partially explored; there are gaps in our understanding of the microbiota localization and in our knowledge of microbial community assembly. In this work, we have visualized, quantified the abundance, and determined the diversity of bacterial occupancy, not only across developmental stages of D. gallinae, but also in the midgut of micro-dissected female D. gallinae mites. We explored community assembly and the presence of keystone taxa, as well as predicted metabolic functions in the microbiome of the mite. The diversity of the microbiota and the complexity of co-occurrence networks decreased with the progression of the life cycle. However, several bacterial taxa were present in all samples examined, indicating a core symbiotic consortium of bacteria. The relatively higher bacterial abundance in adult females, specifically in their midguts, implicates a function linked to the biology of D. gallinae mites. If such an association proves to be important, the bacterial microflora qualifies itself as an acaricidal or vaccine target against this troublesome pest.


Assuntos
Infestações por Ácaros , Ácaros , Doenças das Aves Domésticas , Animais , Feminino , Galinhas/parasitologia , Doenças das Aves Domésticas/parasitologia , Doenças das Aves Domésticas/prevenção & controle , Ácaros/microbiologia , Estágios do Ciclo de Vida , Bactérias/genética , Infestações por Ácaros/parasitologia , Infestações por Ácaros/prevenção & controle
4.
Biochem J ; 478(9): 1783-1794, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33988703

RESUMO

Ticks and the pathogens they transmit, including bacteria, viruses, protozoa, and helminths, constitute a growing burden for human and animal health worldwide. The ability of some animal species to acquire resistance to blood-feeding by ticks after a single or repeated infestation is known as acquired tick resistance (ATR). This resistance has been associated to tick-specific IgE response, the generation of skin-resident memory CD4+ T cells, basophil recruitment, histamine release, and epidermal hyperplasia. ATR has also been associated with protection to tick-borne tularemia through allergic klendusity, a disease-escaping ability produced by the development of hypersensitivity to an allergen. In addition to pathogen transmission, tick infestation in humans is associated with the α-Gal syndrome (AGS), a type of allergy characterized by an IgE response against the carbohydrate Galα1-3Gal (α-Gal). This glycan is present in tick salivary proteins and on the surface of tick-borne pathogens such as Borrelia burgdorferi and Anaplasma phagocytophilum, the causative agents of Lyme disease and granulocytic anaplasmosis. Most α-Gal-sensitized individuals develop IgE specific against this glycan, but only a small fraction develop the AGS. This review summarizes our current understanding of ATR and its impact on the continuum α-Gal sensitization, allergy, and the AGS. We propose that the α-Gal-specific IgE response in humans is an evolutionary adaptation associated with ATR and allergic klendusity with the trade-off of developing AGS.


Assuntos
Anaplasmose/imunologia , Resistência à Doença , Hipersensibilidade Alimentar/imunologia , Hiperplasia/imunologia , Doença de Lyme/imunologia , Carrapatos/imunologia , Tularemia/imunologia , Alérgenos/administração & dosagem , Anaplasma phagocytophilum/imunologia , Anaplasma phagocytophilum/patogenicidade , Anaplasmose/etiologia , Anaplasmose/patologia , Anaplasmose/prevenção & controle , Animais , Basófilos/imunologia , Basófilos/patologia , Borrelia burgdorferi/imunologia , Borrelia burgdorferi/patogenicidade , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Epiderme/imunologia , Epiderme/parasitologia , Hipersensibilidade Alimentar/etiologia , Hipersensibilidade Alimentar/patologia , Hipersensibilidade Alimentar/prevenção & controle , Interações Hospedeiro-Parasita/imunologia , Humanos , Hiperplasia/etiologia , Hiperplasia/patologia , Imunoglobulina E/biossíntese , Memória Imunológica , Doença de Lyme/etiologia , Doença de Lyme/patologia , Doença de Lyme/prevenção & controle , Carrapatos/química , Carrapatos/patogenicidade , Tularemia/etiologia , Tularemia/patologia , Tularemia/prevenção & controle
5.
Euro Surveill ; 27(42)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36268740

RESUMO

Mediterranean spotted fever-like illness (MSF-like illness) is a tick-borne disease caused by Rickettsia sibirica mongolitimonae first reported in France more than 25 years ago. Until today, more than 50 cases of MSF-like illness have been reported in different regions of Europe and Africa, highlighting variable clinical manifestation. Here we report a case of MSF-like illness following a bite from a Hyalomma tick in the Skopje region of North Macedonia.


Assuntos
Febre Botonosa , Infecções por Rickettsia , Rickettsia , Humanos , Animais , Infecções por Rickettsia/diagnóstico , Infecções por Rickettsia/microbiologia , Febre Botonosa/diagnóstico , República da Macedônia do Norte , Rickettsia/genética
6.
Expert Rev Proteomics ; 18(12): 1099-1116, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34904495

RESUMO

BACKGROUND: Ticks are obligate hematophagous arthropods that synthesize the glycan Galα1-3Galß1-(3)4GlcNAc-R (α-Gal) associated with the alpha-gal syndrome (AGS) or allergy to mammalian meat consumption. RESEARCH DESIGN AND METHODS: In this study, we used a proteomics approach to characterize tick proteins in salivary glands (sialome SG), secreted saliva (sialome SA) and with α-Gal modification (alphagalactome SG and SA) in model tick species associated with the AGS in the United States (Amblyomma americanum) and Australia (Ixodes holocyclus). Selected proteins reactive to sera (IgE) from patients with AGS were identified to advance in the identification of possible proteins associated with the AGS. For comparative analysis, the α-Gal content was measured in various tick species. RESULTS: The results confirmed that ticks produce proteins with α-Gal modifications and secreted into saliva during feeding. Proteins identified in tick alphagalactome SA by sera from patients with severe AGS symptomatology may constitute candidate disease biomarkers. CONCLUSIONS: The results support the presence of tick-derived proteins with α-Gal modifications in the saliva with potential implications in AGS and other disorders and protective capacity against tick infestations and pathogen infection. Future research should focus on the characterization of the function of tick glycoproteins with α-Gal in tick biology and AGS.


Assuntos
Saliva , Carrapatos , Animais , Biomarcadores , Hipersensibilidade Alimentar , Humanos , Glândulas Salivares
7.
Int J Mol Sci ; 20(18)2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31533312

RESUMO

Mammalian sperm must undergo a set of structural and functional changes collectively termed as capacitation to ensure a successful oocyte fertilization. However, capacitation can be compromised by cryopreservation procedures, which alter the proteome and longevity of sperm. To date, how the protein changes induced by cryopreservation could affect the acquisition of sperm fertilizing potential remains unexplored. The present study investigated the protein profile of ram sperm during in vitro capacitation before and after cryopreservation to elucidate the impact of cryopreservation on sperm capacitation at a molecular level. Fresh and cryopreserved ram sperm were incubated under capacitating (CAP) and non-capacitating (NC) conditions for 240 min. The sperm proteome of these four treatments was analyzed and compared at different incubation times using reverse phase liquid chromatography coupled to mass spectrometry (RP-LC-MS/MS). The comparison between fresh and cryopreserved sperm suggested that cryopreservation facilitated an apoptosis-stress response and redox process, while the comparison between sperm incubated in CAP and NC conditions showed that capacitation increased those biological processes associated with signaling, metabolism, motility, and reproductive processes. In addition, 14 proteins related to mitochondrial activity, sperm motility, oocyte recognition, signaling, spermatogenesis, and the apoptosis-stress response underwent significant changes in abundance over time when fresh and cryopreserved sperm incubated in CAP and NC conditions were compared. Our results indicate that disturbances in a ram sperm proteome after cryopreservation may alter the quality of sperm and its specific machinery to sustain capacitation under in vitro conditions.


Assuntos
Criopreservação , Proteoma , Capacitação Espermática , Espermatozoides/metabolismo , Animais , Apoptose , Criopreservação/métodos , Ensaio de Imunoadsorção Enzimática , Congelamento , Masculino , Mitocôndrias , Capacitação Espermática/genética , Motilidade dos Espermatozoides
8.
Exp Appl Acarol ; 78(4): 555-564, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31367978

RESUMO

Blood-feeding ectoparasites constitute a growing burden for human and animal health, and animal production worldwide. In particular, mites (Acari: Gamasida) of the genera Dermanyssus (Dermanyssidae) and Ornithonyssus (Macronyssidae) infest birds and cause gamasoidosis in humans. The tropical fowl mite, Ornithonyssus bursa, is commonly found in tropical and subtropical countries but rarely reported in Europe. In this research we characterized the first two cases in Spain of clinical gamasoidosis diagnosed in patients infested with O. bursa, and investigated the IgE, IgM and IgG antibody response to mite proteins and the carbohydrate Galα1-3Galß1-(3)4GlcNAc-R (α-Gal) involved in the tick-bite associated alpha-Gal syndrome (AGS). The results suggested that O. bursa is establishing across Mediterranean countries, and may increase the risk for gamasoidosis. The immune antibody response to mite proteins was higher for IgM and similar for IgE and IgG antibodies between patients and non-allergic control individuals exposed to mite or tick bites. The anti-α-Gal antibody levels were similar between patients and controls, a result supported by the absence of this carbohydrate in mites. These results suggested that mite bites do not correlate with antibody response to acarine proteins or α-Gal, and are not associated with the AGS.


Assuntos
Proteínas de Artrópodes/imunologia , Infestações por Ácaros/diagnóstico , Infestações por Ácaros/imunologia , Ácaros/fisiologia , Oligossacarídeos/imunologia , Idoso , Animais , Feminino , Humanos , Imunoglobulina E/imunologia , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Masculino , Infestações por Ácaros/parasitologia , Ácaros/classificação , Espanha
9.
J Immunol ; 196(3): 1102-7, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26718337

RESUMO

Guillain-Barré syndrome (GBS) is an immune-mediated peripheral neuropathy. The goal of this research was the identification of biomarkers associated with recovery from GBS. In this study, we compared the transcriptome of PBMCs from a GBS patient and her healthy twin to discover possible correlates of disease progression and recovery. The study was then extended using GBS and spinal cord injury unrelated patients with similar medications and healthy individuals. The early growth response gene-2 (EGR2) was upregulated in GBS patients during disease recovery. The results provided evidence for the implication of EGR2 in GBS and suggested a role for EGR2 in the regulation of IL-17, IL-22, IL-28A, and TNF-ß cytokines in GBS patients. These results identified biomarkers associated with GBS recovery and suggested that EGR2 overexpression has a pivotal role in the downregulation of cytokines implicated in the pathophysiology of this acute neuropathy.


Assuntos
Biomarcadores/análise , Proteína 2 de Resposta de Crescimento Precoce/biossíntese , Síndrome de Guillain-Barré/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Citocinas/biossíntese , Proteína 2 de Resposta de Crescimento Precoce/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Recuperação de Função Fisiológica , Transcriptoma , Regulação para Cima , Adulto Jovem
10.
J Fish Dis ; 41(10): 1515-1528, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29956837

RESUMO

Control of mycobacterial infection constitutes a priority for human and animal health worldwide. However, effective vaccines are needed for the control of human and animal tuberculosis (TB). Adult zebrafish have become a useful model for studying the pathophysiology of mycobacterial infection and for the development of novel interventions for TB control and prevention. Recently, parenteral and oral immunization with the heat-inactivated Mycobacterium bovis vaccine (M. bovis IV) protected wild boar against TB. The objectives of this study were to provide additional support for the role of M. bovis IV in TB control using the zebrafish model and to conduct the first trial with this vaccine for the control of fish mycobacteriosis. The results showed that M. bovis IV protected zebrafish against mycobacteriosis caused by low and high infection doses of Mycobacterium marinum and provided evidence suggesting that the protective mechanism elicited by M. bovis IV in zebrafish as in other species is based on the activation of the innate immune response through the C3 pathway, with a role for the regulatory protein Akr2 in this process. These results encourage the use of M. bovis IV for TB control in different species.


Assuntos
Doenças dos Peixes/prevenção & controle , Temperatura Alta , Viabilidade Microbiana , Tuberculose/veterinária , Vacinas de Produtos Inativados/imunologia , Peixe-Zebra/microbiologia , Animais , Modelos Animais de Doenças , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Imunidade Inata , Mycobacterium bovis/imunologia , Tuberculose/imunologia , Tuberculose/prevenção & controle , Vacinação , Vacinas de Produtos Inativados/administração & dosagem , Peixe-Zebra/imunologia
11.
Mol Cell Proteomics ; 14(12): 3154-72, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26424601

RESUMO

Anaplasma phagocytophilum is an emerging zoonotic pathogen that causes human granulocytic anaplasmosis. These intracellular bacteria establish infection by affecting cell function in both the vertebrate host and the tick vector, Ixodes scapularis. Previous studies have characterized the tick transcriptome and proteome in response to A. phagocytophilum infection. However, in the postgenomic era, the integration of omics datasets through a systems biology approach allows network-based analyses to describe the complexity and functionality of biological systems such as host-pathogen interactions and the discovery of new targets for prevention and control of infectious diseases. This study reports the first systems biology integration of metabolomics, transcriptomics, and proteomics data to characterize essential metabolic pathways involved in the tick response to A. phagocytophilum infection. The ISE6 tick cells used in this study constitute a model for hemocytes involved in pathogen infection and immune response. The results showed that infection affected protein processing in endoplasmic reticulum and glucose metabolic pathways in tick cells. These results supported tick-Anaplasma co-evolution by providing new evidence of how tick cells limit pathogen infection, while the pathogen benefits from the tick cell response to establish infection. Additionally, ticks benefit from A. phagocytophilum infection by increasing survival while pathogens guarantee transmission. The results suggested that A. phagocytophilum induces protein misfolding to limit the tick cell response and facilitate infection but requires protein degradation to prevent ER stress and cell apoptosis to survive in infected cells. Additionally, A. phagocytophilum may benefit from the tick cell's ability to limit bacterial infection through PEPCK inhibition leading to decreased glucose metabolism, which also results in the inhibition of cell apoptosis that increases infection of tick cells. These results support the use of this experimental approach to systematically identify cell pathways and molecular mechanisms involved in tick-pathogen interactions. Data are available via ProteomeXchange with identifier PXD002181.


Assuntos
Anaplasma phagocytophilum/fisiologia , Ehrlichiose/veterinária , Metabolômica/métodos , Proteômica/métodos , Carrapatos/microbiologia , Animais , Linhagem Celular , Ehrlichiose/genética , Ehrlichiose/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Glucose/metabolismo , Interações Hospedeiro-Patógeno , Redes e Vias Metabólicas , Biologia de Sistemas/métodos
12.
Pathogens ; 13(1)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38276164

RESUMO

Avian malaria infection has been known to affect host microbiota, but the impact of Plasmodium infection on the colonization resistance in bird gut microbiota remains unexplored. This study investigated the dynamics of Plasmodium relictum infection in canaries, aiming to explore the hypothesis that microbiota modulation by P. relictum would reduce colonization resistance. Canaries were infected with P. relictum, while a control group was maintained. The results revealed the presence of P. relictum in the blood of all infected canaries. Analysis of the host microbiota showed no significant differences in alpha diversity metrics between infected and control groups. However, significant differences in beta diversity indicated alterations in the microbial taxa composition of infected birds. Differential abundance analysis identified specific taxa with varying prevalence between infected and control groups at different time points. Network analysis demonstrated a decrease in correlations and revealed that P. relictum infection compromised the bird microbiota's ability to resist the removal of taxa but did not affect network robustness with the addition of new nodes. These findings suggest that P. relictum infection reduces gut microbiota stability and has an impact on colonization resistance. Understanding these interactions is crucial for developing strategies to enhance colonization resistance and maintain host health in the face of parasitic infections.

13.
Heliyon ; 10(10): e30914, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38784541

RESUMO

Breast cancer, a global health concern affecting women, has been linked to alterations in the gut microbiota, impacting various aspects of human health. This study investigates the interplay between breast cancer and the gut microbiome, particularly focusing on colonization resistance-an essential feature of the microbiota's ability to prevent pathogenic overgrowth. Using a mouse model of breast cancer, we employ diversity analysis, co-occurrence network analysis, and robustness tests to elucidate the impact of breast cancer on microbiome dynamics. Our results reveal that breast cancer exposure affects the bacterial community's composition and structure, with temporal dynamics playing a role. Network analysis demonstrates that breast cancer disrupts microbial interactions and decreases network complexity, potentially compromising colonization resistance. Moreover, network robustness analysis shows the susceptibility of the microbiota to node removal, indicating potential vulnerability to pathogenic colonization. Additionally, predicted metabolic profiling of the microbiome highlights the significance of the enzyme EC 6.2.1.2 - Butyrate--CoA ligase, potentially increasing butyrate, and balancing the reduction of colonization resistance. The identification of Rubrobacter as a key contributor to this enzyme suggests its role in shaping the microbiota's response to breast cancer. This study uncovers the intricate relationship between breast cancer, the gut microbiome, and colonization resistance, providing insights into potential therapeutic strategies and diagnostic approaches for breast cancer patients.

14.
Front Immunol ; 15: 1368599, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558802

RESUMO

Dengue has had a significant global health impact, with a dramatic increase in incidence over the past 50 years, affecting more than 100 countries. The absence of a specific treatment or widely applicable vaccine emphasizes the urgent need for innovative strategies. This perspective reevaluates current evidence supporting the concept of dual protection against the dengue virus (DENV) through natural antibodies (NAbs), particularly anti-α-Gal antibodies induced by the host's gut microbiome (GM). These anti-α-Gal antibodies serve a dual purpose. Firstly, they can directly identify DENV, as mosquito-derived viral particles have been observed to carry α-Gal, thereby providing a safeguard against human infections. Secondly, they possess the potential to impede virus development in the vector by interacting with the vector's microbiome and triggering infection-refractory states. The intricate interplay between human GM and NAbs on one side and DENV and vector microbiome on the other suggests a novel approach, using NAbs to directly target DENV and simultaneously disrupt vector microbiome to decrease pathogen transmission and vector competence, thereby blocking DENV transmission cycles.


Assuntos
Vírus da Dengue , Dengue , Microbiota , Animais , Humanos , Anticorpos Neutralizantes , Mosquitos Vetores
15.
Artigo em Inglês | MEDLINE | ID: mdl-38765730

RESUMO

Upon ingestion from an infected host, tick-borne pathogens (TBPs) have to overcome colonization resistance, a defense mechanism by which tick microbiota prevent microbial invasions. Previous studies have shown that the pathogen Anaplasma phagocytophilum alters the microbiota composition of the nymphs of Ixodes scapularis, but its impact on tick colonization resistance remains unclear. We analyzed tick microbiome genetic data using published Illumina 16S rRNA sequences, assessing microbial diversity within ticks (alpha diversity) through species richness, evenness, and phylogenetic diversity. We compared microbial communities in ticks with and without infection with A. phagocytophilum (beta diversity) using the Bray-Curtis index. We also built co-occurrence networks and used node manipulation to study the impact of A. phagocytophilum on microbial assembly and network robustness, crucial for colonization resistance. We examined network robustness by altering its connectivity, observing changes in the largest connected component (LCC) and the average path length (APL). Our findings revealed that infection with A. phagocytophilum does not significantly alter the overall microbial diversity in ticks. Despite a decrease in the number of nodes and connections within the microbial networks of infected ticks, certain core microbes remained consistently interconnected, suggesting a functional role. The network of infected ticks showed a heightened vulnerability to node removal, with smaller LCC and longer APL, indicating reduced resilience compared to the network of uninfected ticks. Interestingly, adding nodes to the network of infected ticks led to an increase in LCC and a decrease in APL, suggesting a recovery in network robustness, a trend not observed in networks of uninfected ticks. This improvement in network robustness upon node addition hints that infection with A. phagocytophilum might lower ticks' resistance to colonization, potentially facilitating further microbial invasions. We conclude that the compromised colonization resistance observed in tick microbiota following infection with A. phagocytophilum may facilitate co-infection in natural tick populations.

16.
Ecol Evol ; 14(4): e11228, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38571811

RESUMO

Interactions within the tick microbiome involving symbionts, commensals, and tick-borne pathogens (TBPs) play a pivotal role in disease ecology. This study explored temporal changes in the microbiome of Rhipicephalus microplus, an important cattle tick vector, focusing on its interaction with Anaplasma marginale. To overcome limitations inherent in sampling methods relying on questing ticks, which may not consistently reflect pathogen presence due to variations in exposure to infected hosts in nature, our study focused on ticks fed on chronically infected cattle. This approach ensures continuous pathogen exposure, providing a more comprehensive understanding of the nesting patterns of A. marginale in the R. microplus microbiome. Using next-generation sequencing, microbiome dynamics were characterized over 2 years, revealing significant shifts in diversity, composition, and abundance. Anaplasma marginale exhibited varying associations, with its increased abundance correlating with reduced microbial diversity. Co-occurrence networks demonstrated Anaplasma's evolving role, transitioning from diverse connections to keystone taxa status. An integrative approach involving in silico node removal unveils the impact of Anaplasma on network stability, highlighting its role in conferring robustness to the microbial community. This study provides insights into the intricate interplay between the tick microbiome and A. marginale, shedding light on potential avenues for controlling bovine anaplasmosis through microbiome manipulation.

17.
Microbiol Res ; 286: 127790, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38851009

RESUMO

Understanding the intricate ecological interactions within the microbiome of arthropod vectors is crucial for elucidating disease transmission dynamics and developing effective control strategies. In this study, we investigated the ecological roles of Coxiella-like endosymbiont (CLE) and Anaplasma marginale across larval, nymphal, and adult stages of Rhipicephalus microplus. We hypothesized that CLE would show a stable, nested pattern reflecting co-evolution with the tick host, while A. marginale would exhibit a more dynamic, non-nested pattern influenced by environmental factors and host immune responses. Our findings revealed a stable, nested pattern characteristic of co-evolutionary mutualism for CLE, occurring in all developmental stages of the tick. Conversely, A. marginale exhibited variable occurrence but exerted significant influence on microbial community structure, challenging our initial hypotheses of its non-nested dynamics. Furthermore, in silico removal of both microbes from the co-occurrence networks altered network topology, underscoring their central roles in the R. microplus microbiome. Notably, competitive interactions between CLE and A. marginale were observed in nymphal network, potentially reflecting the impact of CLE on the pathogen transstadial-transmission. These findings shed light on the complex ecological dynamics within tick microbiomes and have implications for disease management strategies.


Assuntos
Anaplasma marginale , Coxiella , Larva , Rhipicephalus , Simbiose , Animais , Rhipicephalus/microbiologia , Coxiella/genética , Larva/microbiologia , Larva/crescimento & desenvolvimento , Microbiota , Ninfa/microbiologia , Ninfa/crescimento & desenvolvimento
18.
Parasit Vectors ; 17(1): 5, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178247

RESUMO

BACKGROUND: Ixodid ticks, particularly Rhipicephalus sanguineus s.l., are important vectors of various disease-causing agents in dogs and humans in Cuba. However, our understading of interactions among tick-borne pathogens (TBPs) in infected dogs or the vector R. sanguineus s.l. remains limited. This study integrates microfluidic-based high-throughput real-time PCR data, Yule's Q statistic, and network analysis to elucidate pathogen-pathogen interactions in dogs and ticks in tropical western Cuba. METHODS: A cross-sectional study involving 46 client-owned dogs was conducted. Blood samples were collected from these dogs, and ticks infesting the same dogs were morphologically and molecularly identified. Nucleic acids were extracted from both canine blood and tick samples. Microfluidic-based high-throughput real-time PCR was employed to detect 25 bacterial species, 10 parasite species, 6 bacterial genera, and 4 parasite taxa, as well as to confirm the identity of the collected ticks. Validation was performed through end-point PCR assays and DNA sequencing analysis. Yule's Q statistic and network analysis were used to analyse the associations between different TBP species based on binary presence-absence data. RESULTS: The study revealed a high prevalence of TBPs in both dogs and R. sanguineus s.l., the only tick species found on the dogs. Hepatozoon canis and Ehrlichia canis were among the most common pathogens detected. Co-infections were observed, notably between E. canis and H. canis. Significant correlations were found between the presence of Anaplasma platys and H. canis in both dogs and ticks. A complex co-occurrence network among haemoparasite species was identified, highlighting potential facilitative and inhibitory roles. Notably, H. canis was found as a highly interconnected node, exhibiting significant positive associations with various taxa, including A. platys, and E. canis, suggesting facilitative interactions among these pathogens. Phylogenetic analysis showed genetic diversity in the detected TBPs. CONCLUSIONS: Overall, this research enhances our understanding of TBPs in Cuba, providing insights into their prevalence, associations, and genetic diversity, with implications for disease surveillance and management.


Assuntos
Doenças do Cão , Rhipicephalus sanguineus , Doenças Transmitidas por Carrapatos , Humanos , Animais , Cães , Filogenia , Estudos Transversais , Microfluídica , Anaplasma/genética , Ehrlichia canis/genética , Rhipicephalus sanguineus/microbiologia , Reação em Cadeia da Polimerase , Doenças do Cão/parasitologia , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/veterinária , Doenças Transmitidas por Carrapatos/microbiologia
19.
Heliyon ; 10(9): e30539, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38742058

RESUMO

Despite the significant health risks associated with Dermanyssus gallinae infestations in humans, they are often overlooked. This study investigated a household case of D. gallinae infestation and explored the resulting clinical manifestations and risk of infection in family members. Microfluidic PCR was employed for high-throughput screening of pathogens in collected mites and blood samples from both chickens and family members. Morphological and molecular examinations confirmed the identity of the mites as D. gallinae sensu stricto (s.s.), with evidence indicating recent blood feeding. Results indicated that the mites exclusively harbored various pathogens, including Bartonella spp., Ehrlichia spp., Apicomplexa, and Theileria spp. Blood samples from family members and poultry tested negative for these pathogens, suggesting a potential reservoir role for D. gallinae. The study further identified haplotypes of D. gallinae, classifying them into D. gallinae s.s., cosmopolitan haplogroup A. Serological analysis revealed elevated IgE seroreactivity against mite proteins in the family member with bite lesions. Antibodies against Bartonella spp. were detected in this individual, indicating exposure to the pathogen. In summary, this study sheds light on the clinical manifestations, pathogen detection, and genetic characterization of D. gallinae infestations, underscoring the necessity of adopting comprehensive approaches to manage such infestations effectively.

20.
Int J Parasitol Drugs Drug Resist ; 23: 130-139, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38043189

RESUMO

The physiological significance of metabotropic acetylcholine receptors in parasitic nematodes remains largely unexplored. Here, three different Trichinella spiralis G protein-coupled acetylcholine receptors (TsGAR-1, -2, and -3) were identified in the genome of T. spiralis. The phylogenetic analyses showed that TsGAR-1 and -2 receptors belong to a distinct clade specific to invertebrates, while TsGAR-3 is closest to the cluster of mammalian-type muscarinic acetylcholine receptors (mAChR). The mRNA of TsGAR-1, -2, and -3 was detected in muscle larvae, newborn larvae, and adults. The functional aequorin-based assay in Chinese hamster ovary cells revealed that all three types of T. spiralis GARs trigger the Gq/11 pathway upon activation of the receptor with the acetylcholine ligand. TsGAR-1 and TsGAR-2 showed atypical affinity with classical muscarinic agonists, while TsGAR-3 was sensitive to all muscarinic agonists tested. High concentrations of propiverine antagonist blocked the activities of all three TsGARs, while atropine and scopolamine antagonists effectively inhibited only TsGAR-3. Our data indicate that the distinct pharmacological profile of TsGAR-1 and -2 receptors, as well as the phylogenetic distance between them and their mammalian orthologs, place them as attractive targets for the development of selective anthelmintic drugs interfering with nematodes' cholinergic system.


Assuntos
Acetilcolina , Trichinella spiralis , Animais , Cricetinae , Recém-Nascido , Humanos , Acetilcolina/farmacologia , Agonistas Muscarínicos/farmacologia , Trichinella spiralis/genética , Células CHO , Filogenia , Cricetulus , Receptores Acoplados a Proteínas G , Receptores Colinérgicos/genética , Proteínas de Ligação ao GTP
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa