RESUMO
Mitochondrial dysfunction and oxidative stress play a central role in the pathophysiology of nonalcoholic fatty liver disease (NAFLD). This study aimed to elucidate the mechanism(s) responsible for mitochondrial dysfunction in nonalcoholic fatty liver. Fatty liver was induced in rats with a choline-deficient (CD) diet for 30 days. We examined the effect of CD diet on various parameters related to mitochondrial function such as complex I activity, oxygen consumption, reactive oxygen species (ROS) generation and cardiolipin content and oxidation. The activity of complex I was reduced by 35% in mitochondria isolated from CD livers compared with the controls. These changes in complex I activity were associated with parallel changes in state 3 respiration. Hydrogen peroxide (H(2)O(2)) generation was significantly increased in mitochondria isolated from CD livers. The mitochondrial content of cardiolipin, a phospholipid required for optimal activity of complex I, decreased by 38% as function of CD diet, while there was a significantly increase in the level of peroxidized cardiolipin. The lower complex I activity in mitochondria from CD livers could be completely restored to the level of control livers by exogenously added cardiolipin. This effect of cardiolipin could not be replaced by other phospholipids nor by peroxidized cardiolipin. It is concluded that CD diet causes mitochondrial complex I dysfunction which can be attributed to ROS-induced cardiolipin oxidation. These findings provide new insights into the alterations underlying mitochondrial dysfunction in NAFLD.
Assuntos
Cardiolipinas/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Fígado Gorduroso/metabolismo , Mitocôndrias Hepáticas/metabolismo , Doenças Mitocondriais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Álcoois , Animais , Respiração Celular/efeitos dos fármacos , Cloro/deficiência , Cloro/farmacologia , Peróxido de Hidrogênio/metabolismo , Masculino , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/patologia , Doenças Mitocondriais/patologia , Oxirredução , Ratos , Ratos WistarRESUMO
Reactive oxygen species (ROS) are considered a key factor in brain aging process. Complex I of the mitochondrial respiration chain is an important site of ROS production and hence a potential contributor to brain functional changes with aging. Appropriate antioxidant strategies could be particularly useful to limit this ROS production and associated mitochondrial dysfunction. Melatonin has been shown to possess antioxidant properties and to reduce oxidant events in brain aging. The mechanism underlying this protective effect of melatonin is not well established. In the present study, we examined the effects of long-term treatment of aged rats with melatonin on various parameters related to mitochondrial bioenergetics in brain tissue. After isolation of mitochondria from control, aged, and melatonin-treated young and aged rats, various bioenergetic parameters were evaluated such as complex I activity, rates of state 3 respiration, mitochondrial hydrogen peroxide (H2O2) production, and membrane potential. The mitochondrial content of normal and oxidized cardiolipin was also evaluated. We found that all these mitochondrial parameters were significantly altered with aging, and that melatonin treatment completely prevented these age-related alterations. These effects appear to be due, at least in part, to melatonin's ability to preserve the content and structural integrity of cardiolipin molecules, which play a pivotal role in mitochondrial bioenergetics. The melatonin's ability to prevent complex I dysfunction and cardiolipin peroxidation was also demonstrated by in vitro experiments on brain mitochondria treated with tert-butyl hydroperoxide. In summary, this study documents a decline of mitochondrial bioenergetic functions in brain with aging and the beneficial effect of melatonin.
Assuntos
Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Cardiolipinas/metabolismo , Melatonina/farmacologia , Animais , Complexo I de Transporte de Elétrons/metabolismo , Metabolismo Energético/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Técnicas In Vitro , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismoRESUMO
The effect of peroxidized cardiolipin on the mitochondrial pore transition (MPT) induction and cytochrome c release in rat heart mitochondria was studied. Treatment of mitochondria with cardiolipin hydroperoxide (CLOOH) promoted matrix swelling and release of cytochrome c. Both these processes were inhibited by cyclosporine A and bongkrekic acid, indicating that peroxidized cardiolipin behaves as an inducer of MPT. Ca2+ accumulation was required for this effect. ANT (ADP/ATP carrier) is involved in the CLOOH-dependent MPT induction as suggested by the modulation by ligands and inhibitors of ANT. These results indicate that CLOOH lowers the threshold of Ca2+ for MPT induction. This synergistic effect of Ca2+ and CLOOH on MPT induction and cytochrome c release in mitochondria might have important implications in the apoptotic process as well as in several pathophysiological situations.
Assuntos
Cálcio/farmacologia , Cardiolipinas/farmacologia , Citocromos c/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Animais , Cardiolipinas/química , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/fisiologia , Peróxidos Lipídicos/química , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/fisiologia , Dilatação Mitocondrial/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , RatosRESUMO
Cardiolipin peroxidation plays a critical role in mitochondrial cytochrome c release and subsequent apoptotic process. Mitochondrial pore transition (MPT) is considered as an important step in this process. In this work, the effect of peroxidized cardiolipin on MPT induction and cytochrome c release in rat heart mitochondria was investigated. Treatment of mitochondria with micromolar concentrations of cardiolipin hydroperoxide (CLOOH) resulted in a dose-dependent matrix swelling, DeltaPsi collapse, release of preaccumulated Ca2+ and release of cytochrome c. All these events were inhibited by cyclosporin A and bongkrekic acid, indicating that peroxidized cardiolipin behaves as an inducer of MPT. Ca2+ accumulation by mitochondria was required for this effect. ANT (ADP/ATP translocator) appears to be involved in the CLOOH-dependent MPT induction, as suggested by the modulation by ligands and inhibitors of adenine nucleotide translocator (ANT). Together, these results indicate that peroxidized cardiolipin lowers the threshold of Ca2+ for MPT induction and cytochrome c release. This synergistic effect of Ca2+ and peroxidized cardiolipin on MPT induction and cytochrome c release in mitochondria, might be important in regulating the initial phase of apoptosis and also may have important implications in those physiopathological situations, characterized by both Ca2+ and peroxidized cardiolipin accumulation in mitochondria, such as aging, ischemia/reperfusion and other degenerative diseases.
Assuntos
Apoptose/efeitos dos fármacos , Cardiolipinas/farmacologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Citocromos c/metabolismo , Mitocôndrias Cardíacas/enzimologia , Envelhecimento/metabolismo , Animais , Cálcio/metabolismo , Relação Dose-Resposta a Droga , Isquemia/metabolismo , Peroxidação de Lipídeos , Translocases Mitocondriais de ADP e ATP/metabolismo , RatosRESUMO
Reactive oxygen species (ROS) are considered a key factor in the heart aging process. Mitochondrial respiration is an important site of ROS generation and a potential contributor to heart functional changes with aging. We have examined the effects of aging on various parameters related to mitochondrial bioenergetics in rat heart, such as complex I activity, oxygen consumption, membrane potential, ROS production, and cardiolipin content and oxidation. A loss in complex I activity, state 3 respiration, and membrane potential was found in mitochondria with aging. The capacity of mitochondria to produce H(2)O(2) was significantly increased in aged rats. The mitochondrial content of cardiolipin, a phospholipid required for optimal activity of complex I, significantly decreased as a function of aging, whereas there was a significant increase in the level of oxidized cardiolipin. The lower complex I activity in mitochondria from aged rats could be almost completely restored to the level of young heart by exogenously added cardiolipin, but not by other phospholipids nor by peroxidized cardiolipin. It is proposed that aging causes heart mitochondrial complex I deficiency, which can be attributed to ROS-induced cardiolipin peroxidation. These results may prove useful in elucidating the mechanism underlying mitochondrial dysfunction associated with heart aging.