Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Drug Chem Toxicol ; 43(5): 496-503, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30257570

RESUMO

Pefloxacin is a second-generation fluoroquinolone antibiotic. Besides its advantageous characteristics, side effects including the hypofunction of salivary glands, decreased saliva production, and peripheral neuropathy were observed during the administration of pefloxacin. The aim of this study was to investigate the changes in the number of serotonergic immunoreactive fibers and mast cells after pefloxacin treatment in the parotid and sublingual glands of rats to detect the possible neurotoxic effect of pefloxacin. The adult female rats were treated with intraperitoneal (i.p.) injection of pefloxacin for three or seven days (at a concentration of 20 mg/100g body weight) and the serotonergic innervation pattern along with the change in mast cell number were evaluated by using histochemistry and immunohistochemistry in the parotid and sublingual glands. We found that a three-day treatment significantly increased the number of immunoreactive serotonergic nerve fibers, but after a seven-day treatment the number of serotonin positive nerve fibers decreased almost to values of the control group. The alteration of mast cell number was parallel with the changes of the serotonin positive fibers during the treatment. These results suggest that pefloxacin treatment can modify the finely controlled communication between the immune- and the peripheral nervous systems, resulting neurogenic inflammatory process. The background of this process is the altered serotonergic innervation and the increased number of activated mast cells releasing different mediators for example histamine, which can finally lead to reduced number of serotonin positive nerve fibers after a seven-day treatment of pefloxacin leading to atrophy and hypofunction of the salivary glands.


Assuntos
Antibacterianos/efeitos adversos , Mastócitos/efeitos dos fármacos , Fibras Nervosas/efeitos dos fármacos , Glândula Parótida/efeitos dos fármacos , Glândula Parótida/inervação , Pefloxacina/efeitos adversos , Serotonina/fisiologia , Glândula Sublingual/efeitos dos fármacos , Glândula Sublingual/inervação , Animais , Contagem de Células , Feminino , Síndromes Neurotóxicas , Ratos , Ratos Wistar
2.
Front Neuroanat ; 18: 1369103, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38496826

RESUMO

Normal brain development requires continuous communication between developing neurons and their environment filled by a complex network referred to as extracellular matrix (ECM). The ECM is divided into distinct families of molecules including hyaluronic acid, proteoglycans, glycoproteins such as tenascins, and link proteins. In this study, we characterize the temporal and spatial distribution of the extracellular matrix molecules in the embryonic and postnatal mouse hindbrain by using antibodies and lectin histochemistry. In the embryo, hyaluronan and neurocan were found in high amounts until the time of birth whereas versican and tenascin-R were detected in lower intensities during the whole embryonic period. After birth, both hyaluronic acid and neurocan still produced intense staining in almost all areas of the hindbrain, while tenascin-R labeling showed a continuous increase during postnatal development. The reaction with WFA and aggrecan was revealed first 4th postnatal day (P4) with low staining intensities, while HAPLN was detected two weeks after birth (P14). The perineuronal net appeared first around the facial and vestibular neurons at P4 with hyaluronic acid cytochemistry. One week after birth aggrecan, neurocan, tenascin-R, and WFA were also accumulated around the neurons located in several hindbrain nuclei, but HAPLN1 was detected on the second postnatal week. Our results provide further evidence that many extracellular macromolecules that will be incorporated into the perineuronal net are already expressed at embryonic and early postnatal stages of development to control differentiation, migration, and synaptogenesis of neurons. In late postnatal period, the experience-driven neuronal activity induces formation of perineuronal net to stabilize synaptic connections.

3.
Sci Rep ; 12(1): 21606, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36517521

RESUMO

Fine control of extraocular muscle fibers derives from two subpopulations of cholinergic motoneurons in the oculomotor-, trochlear- and abducens nuclei. Singly- (SIF) and multiply innervated muscle fibers (MIF) are supplied by the SIF- and MIF motoneurons, respectively, representing different physiological properties and afferentation. SIF motoneurons, as seen in earlier studies, are coated with chondroitin sulfate proteoglycan rich perineuronal nets (PNN), whereas MIF motoneurons lack those. Fine distribution of individual lecticans in the composition of PNNs and adjacent neuropil, as well as the pace of their postnatal accumulation is, however, still unknown. Therefore, the present study aims, by using double immunofluorescent identification and subsequent morphometry, to describe local deposition of lecticans in the perineuronal nets and neuropil of the three eye movement nuclei. In each nucleus PNNs were consequently positive only with WFA and aggrecan reactions, suggesting the dominating role of aggrecan is PNN establishment. Brevican, neurocan and versican however, did not accumulate at all in PNNs but were evenly and moderately present throughout the neuropils. The proportion of PNN bearing motoneurons appeared 76% in oculomotor-, 72.2% in trochlear- and 78.3% in the abducens nucleus. We also identified two morphological subsets of PNNs, the focal and diffuse nets of SIF motoneurons. The process of CSPG accumulation begins just after birth, although considerable PNNs occur at week 1 age around less than half of the motoneurons, which ratio doubles until 2-month age. These findings may be related to the postnatal establishment of the oculokinetic network, performing different repertoires of voluntary eye movements in functionally afoveolate and foveolate animals.


Assuntos
Proteoglicanas de Sulfatos de Condroitina , Músculos Oculomotores , Animais , Músculos Oculomotores/fisiologia , Agrecanas , Neurônios Motores/fisiologia , Matriz Extracelular , Colinérgicos
4.
Neural Regen Res ; 17(3): 649-654, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34380906

RESUMO

Damage to the vestibular sense organs evokes static and dynamic deficits in the eye movements, posture and vegetative functions. After a shorter or longer period of time, the vestibular function is partially or completely restored via a series of processes such as modification in the efficacy of synaptic inputs. As the plasticity of adult central nervous system is associated with the alteration of extracellular matrix, including its condensed form, the perineuronal net, we studied the changes of brevican expression in the perineuronal nets of the superior vestibular nucleus after unilateral labyrinth lesion. Our results demonstrated that the unilateral labyrinth lesion and subsequent compensation are accompanied by the changing of brevican staining pattern in the perineuronal nets of superior vestibular nucleus of the rat. The reduction of brevican in the perineuronal nets of superior vestibular nucleus may contribute to the vestibular plasticity by suspending the non-permissive role of brevican in the restoration of perineuronal net assembly. After a transitory decrease, the brevican expression restored to the control level parallel to the partial restoration of impaired vestibular function. The bilateral changing in the brevican expression supports the involvement of commissural vestibular fibers in the vestibular compensation. All experimental procedures were approved by the 'University of Debrecen - Committee of Animal Welfare' (approval No. 6/2017/DEMAB) and the 'Scientific Ethics Committee of Animal Experimentation' (approval No. HB/06/ÉLB/2270-10/2017; approved on June 6, 2017).

5.
Brain Struct Funct ; 225(1): 321-344, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31858237

RESUMO

Extracellular matrix (ECM) became an important player over the last few decades when studying the plasticity and regeneration of the central nervous system. In spite of the established role of ECM in these processes throughout the central nervous system (CNS), only few papers were published on the ECM of the olfactory system, which shows a lifelong plasticity, synaptic remodeling and postnatal neurogenesis. In the present study, we have described the localization and organization of major ECM molecules, the hyaluronan, the lecticans, tenascin-R and HAPLN1 link protein in the olfactory bulb (OB) of the rat. We detected all of these molecules in the OB showing differences in the molecular composition, staining intensity, and organization of ECM between the layers and in some cases within a single layer. One of the striking features of ECM staining pattern in the OB was that the reactions are shown dominantly in the neuropil, the PNNs were found rarely and they exhibited thin or diffuse appearance Similar organization was shown in human and mice samples. As the PNN limits the neural plasticity, its rare appearance may be related to the high degree of plasticity in the OB.


Assuntos
Proteínas da Matriz Extracelular/análise , Matriz Extracelular/química , Neurônios/citologia , Bulbo Olfatório/química , Bulbo Olfatório/citologia , Animais , Humanos , Imuno-Histoquímica , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos Wistar
6.
Brain Res ; 1187: 111-5, 2008 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-18036575

RESUMO

Moving visual stimuli elicit a sequence of coordinated activity of muscles including tongue protraction. Morphological and physiological studies fail to reveal any direct tectal projections to hypoglossal motoneurons suggesting that the last-order premotor interneurons (LOPI) are the direct recipients of neural activities generated in the optic tectum. The aim of this study is to analyze the topographical organization of the last-order premotor interneurons related to protractor muscles of the tongue. In Rana esculenta, biotinylated dextran amine (BDA) was injected by iontophoresis into the subnucleus of the hypoglossal nerve containing the motoneurons of protractor muscles of the tongue. For visualizing BDA, sections were treated with avidin-biotin complex and a nickel-enhanced DAB chromogen reaction. The position of labeled neurons was reconstructed with a Neurolucida equipment. Morphologically heterogeneous populations of neurons were detected bilaterally, the majority of them were distributed ipsilateral to the site of injection and extended 1200 microm in rostral and 500 microm in caudal directions. Labeled neurons were found in the rhombencephalic reticular formation, the vestibular nuclei, the nucleus prepositus hypoglossi, the nucleus of solitary tract, the spinal nucleus of trigeminal nerve and the dorsal column nuclei. Our results indicate that the majority of last-order premotor interneurons related to protractor muscles of the tongue are located in the reticular formation of the brainstem. Since this area also receives a significant input from the vestibular system and from proprioceptive fibers, the last-order premotor interneurons presented here may be the target of convergence of sensory modalities involved in prey-catching behavior.


Assuntos
Tronco Encefálico/citologia , Nervo Hipoglosso/citologia , Interneurônios/citologia , Rana esculenta/anatomia & histologia , Formação Reticular/citologia , Língua/inervação , Animais , Biotina/análogos & derivados , Mapeamento Encefálico , Tronco Encefálico/fisiologia , Dendritos/fisiologia , Dendritos/ultraestrutura , Dextranos , Nervo Hipoglosso/fisiologia , Interneurônios/fisiologia , Microinjeções , Neurônios Motores/citologia , Neurônios Motores/fisiologia , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Vias Neurais/citologia , Vias Neurais/fisiologia , Propriocepção/fisiologia , Rana esculenta/fisiologia , Formação Reticular/fisiologia , Especificidade da Espécie , Coloração e Rotulagem , Língua/fisiologia , Núcleos Vestibulares/citologia , Núcleos Vestibulares/fisiologia
7.
Brain Res Bull ; 75(2-4): 371-4, 2008 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-18331900

RESUMO

The aim of this study was to investigate whether primary vestibular afferent fibers establish direct connections with the motor and sensory trigeminal system in the brainstem of the frog. The experiments were carried out on Rana esculenta. In anaesthetized animals the trigeminal and vestibular nerves were prepared, and their proximal stumps were labeled either with fluorescein binding dextran amine (trigeminal nerve) or tetramethylrhodamine dextran amine (vestibulocochlear nerve). With a confocal laser scanning microscope we could detect close connections between the vestibular fibers and branches of the dorsal dendritic array of the jaw-closing motoneurons, suggestive of monosynaptic contacts. In the other parts of the brainstem, vestibular terminals were detected in the termination areas of the mesencephalic trigeminal nucleus and of the Gasserian (Vth) ganglion and they were probably involved in polysynaptic connections. In agreement with the results obtained in mammalian species, the present findings suggest that the vestibulotrigeminal relationship is quite complex and uses multiple pathways to connect the vestibular apparatus with the motor and sensory nuclei of the trigeminal nerve in the anurans as well.


Assuntos
Rana esculenta/anatomia & histologia , Núcleos do Trigêmeo/anatomia & histologia , Vestíbulo do Labirinto/anatomia & histologia , Animais , Dextranos/metabolismo , Fluoresceínas/metabolismo , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia , Núcleos do Trigêmeo/metabolismo , Vestíbulo do Labirinto/metabolismo
8.
Brain Res Bull ; 75(2-4): 419-23, 2008 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-18331909

RESUMO

Gaze fixation requires very fast movements of the eye during body displacement. The morphological and physiological background of the very fine and continuous tuning of gaze fixation is not yet fully understood. In a previous study we have shown that the dendrites of oculomotor neurons form bundles which invade the trochlear nucleus, and vice versa, trochlear dendritic bundles invade the oculomotor nucleus. Earlier physiological observations demonstrating electrotonic coupling between dendrites of spinal motoneurons in the frog suggest a similar mechanism between the oculomotor and trochlear motoneurons. We studied a possible morphological basis of gaze fixation. The experiments were carried out on common water frogs, Rana esculenta. The trochlear and oculomotor nerves were cut, and their proximal stumps were labeled simultaneously with different retrograde fluorescent tracers. Using confocal laser scanning microscope we detected a large number of close contacts in both nuclei, the majority of them were dendrodendritic apposition. The distance between the adjacent profiles suggested close membrane appositions without intercalating glial or neuronal elements. At the ultrastructural level, the dendrodendritic and dendrosomatic contacts did not show any morphological specialization; the long membrane appositions may provide ephaptic interactions between the neighboring profiles. This electrotonic coupling between the oculomotor and trochlear nerve motoneurons may promote the co-activation of the muscles responsible for vertical eye movements.


Assuntos
Anuros/anatomia & histologia , Axônios/fisiologia , Tronco Encefálico/citologia , Dendritos/fisiologia , Junções Comunicantes/fisiologia , Neurônios Motores/citologia , Animais , Axônios/ultraestrutura , Dendritos/ultraestrutura , Dextranos/metabolismo , Fluoresceínas/metabolismo , Junções Comunicantes/metabolismo , Junções Comunicantes/ultraestrutura , Nervo Oculomotor/fisiologia , Nervo Troclear/fisiologia
9.
Neuroscience ; 394: 177-188, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30367949

RESUMO

Previously we described similarities and differences in the organization and molecular composition of an aggrecan based extracellular matrix (ECM) in three precerebellar nuclei, the inferior olive, the prepositus hypoglossi nucleus and the red nucleus of the rat associated with their specific cytoarchitecture, connection and function in the vestibular system. The aim of present study is to map the ECM pattern in a mesencephalic precerebellar nucleus, the pararubral area, which has a unique function among the precerebellar nuclei with its retinal connection and involvement in the circadian rhythm regulation. Using histochemistry and immunohistochemistry we have described for the first time the presence of major ECM components, the hyaluronan, aggrecan, versican, neurocan, brevican, tenascin-R (TN-R), and the HAPLN1 link protein in the pararubral area. The most common form of the aggrecan based ECM was the diffuse network in the neuropil, but each type of the condensed forms was also recognizable. Characteristic perineuronal nets (PNNs) were only recognizable with Wisteria floribunda agglutinin (WFA) and aggrecan staining around some of the medium-sized neurons, whereas the small cells were rarely surrounded by a weakly stained PNNs. The moderate expression of key molecules of PNN, the hyaluronan (HA) and HAPLN1 suggests that the lesser stability of ECM assembly around the pararubral neurons may allow quicker response to the modified neuronal activity and contributes to the high level of plasticity in the vestibular system.


Assuntos
Proteínas da Matriz Extracelular/análise , Matriz Extracelular/metabolismo , Mesencéfalo/metabolismo , Animais , Feminino , Mesencéfalo/citologia , Neurônios/citologia , Neurônios/metabolismo , Ratos Wistar
10.
Brain Struct Funct ; 223(4): 1683-1696, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29189907

RESUMO

Coordinated movement of the jaw is essential for catching and swallowing the prey. The majority of the jaw muscles in frogs are supplied by the trigeminal motoneurons. We have previously described that the primary vestibular afferent fibers, conveying information about the movements of the head, established close appositions on the motoneurons of trigeminal nerve providing one of the morphological substrates of monosynaptic sensory modulation of prey-catching behavior in the frog. The aim of our study was to reveal the spatial distribution of vestibular close appositions on the somatodendritic compartments of the functionally different trigeminal motoneurons. In common water frogs, the vestibular and trigeminal nerves were simultaneously labeled with different fluorescent dyes and the possible direct contacts between vestibular afferents and trigeminal motoneurons were identified with the help of DSD2 attached to an Andor Zyla camera. In the rhombencephalon, an overlapping area was detected between the incoming vestibular afferents and trigeminal motoneurons along the whole extent of the trigeminal motor nucleus. The vestibular axon collaterals formed large numbers of close appositions with dorsomedial and ventrolateral dendrites of trigeminal motoneurons. The majority of direct contacts were located on proximal dendritic segments closer than 300 µm to the somata. The identified contacts were evenly distributed on rostral motoneurons innervating jaw-closing muscles and motoneurons supplying jaw-opening muscles and located in the caudal part of trigeminal nucleus. We suggest that the identified contacts between vestibular axon terminals and trigeminal motoneurons may constitute one of the morphological substrates of a very quick response detected in trigeminal motoneurons during head movements.


Assuntos
Vias Aferentes/fisiologia , Arcada Osseodentária/fisiologia , Neurônios Motores/fisiologia , Movimento/fisiologia , Comportamento Predatório/fisiologia , Animais , Anuros/fisiologia , Mapeamento Encefálico , Desempenho Psicomotor/fisiologia , Nervo Trigêmeo/citologia
11.
J Comp Neurol ; 496(3): 382-94, 2006 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-16566006

RESUMO

Application of neurobiotin to the nerves of individual labyrinthine organs and dorsal root fibers of limb-innervating segments of the frog resulted in labeling of granule cells in the cerebellum showing a significant overlap with a partial segregation in the related areas of termination. In different parts of the cerebellum, various combinations of different canal and otolith organ-related granule cells have been discerned. The difference in the extension of territories of vertical canals vs. horizontal canals may reflect their different involvement in the vestibuloocular and vestibulospinal reflex. Dye-coupled cells related to the lagenar and saccular neurons were localized in more rostral parts of the cerebellum, whereas cells of the utricle were represented only in its caudal half. This separation is supportive of the dual function of the lagena and the saccule. The territories of granule cells related to the cervical and lumbar segments of the spinal cord were almost completely separated along the rostrocaudal axis of cerebellum, whereas their territories were almost entirely overlapping in the mediolateral and ventrodorsal directions. The partial overlap of labyrinthine organ-related and dorsal root fiber-related granule cells are suggestive of a convergence of sensory modalities involved in the sense of balance. We propose that the afferent input of vestibular and proprioceptive fibers mediated by gap junctions to the cerebellar granule cells subserve one of the possible morphological correlates of a very rapid modification of the motor activity in the vestibulocerebellospinal neuronal circuit.


Assuntos
Vias Aferentes/citologia , Cerebelo/citologia , Neurônios , Rana esculenta/anatomia & histologia , Raízes Nervosas Espinhais/anatomia & histologia , Vestíbulo do Labirinto/anatomia & histologia , Vias Aferentes/efeitos dos fármacos , Animais , Biotina/análogos & derivados , Biotina/farmacocinética , Mapeamento Encefálico , Neurônios/fisiologia , Raízes Nervosas Espinhais/efeitos dos fármacos , Vestíbulo do Labirinto/efeitos dos fármacos , Vestíbulo do Labirinto/inervação
12.
J Comp Neurol ; 496(6): 819-31, 2006 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-16628618

RESUMO

The qualitative and quantitative distribution pattern of hyaluronan (HA), a component of the extracellular matrix (ECM), was studied in the frog central nervous system by using a highly specific HA probe and digital image analysis. HA reaction was observed in both the white and the gray matter, showing a very intense staining around the perikarya and dendrites in the perineuronal net (PN). In the telencephalon, strong reaction was found in different parts of the olfactory system, in the pallium, and in the amygdala. In the diencephalon, intensive staining was found in the nucleus of Bellonci, the dorsal habenula, the lateral and central thalamic nuclei, and the subependymal zone of the third ventricle. In the mesencephalon, layers of optic tectum displayed different intensities, with the strongest reaction in layers B, D, F, 3, and 5. Other structures of the mesencephalon showed regional differences. The PN was especially intensively stained around the perikarya of the toral nuclei, the oculomotor and trochlear nuclei, and the basal optic nucleus. In the rhombencephalon, the granular layer of cerebellum, the vestibulocochlear nuclei, the superior olive, the spinal tract of the trigeminal nerve, and parts of the reticular formation showed the most intense reaction in the PN. In the spinal cord, considerable HA staining was found in the white matter and around the perikarya of motoneurons. The present study is the first description of the HA-positive areas of frog brain and spinal cord demonstrating the heterogeneity of HA distribution in the frog central nervous system.


Assuntos
Encéfalo/metabolismo , Ácido Hialurônico/metabolismo , Medula Espinal/metabolismo , Animais , Encéfalo/anatomia & histologia , Matriz Extracelular/metabolismo , Processamento de Imagem Assistida por Computador , Especificidade de Órgãos , Rana esculenta , Medula Espinal/anatomia & histologia
13.
Brain Struct Funct ; 221(3): 1533-53, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25575900

RESUMO

The hypoglossal motor nucleus is one of the efferent components of the neural network underlying the tongue prehension behavior of Ranid frogs. Although the appropriate pattern of the motor activity is determined by motor pattern generators, sensory inputs can modify the ongoing motor execution. Combination of fluorescent tracers were applied to investigate whether there are direct contacts between the afferent fibers of the trigeminal, facial, vestibular, glossopharyngeal-vagal, hypoglossal, second cervical spinal nerves and the hypoglossal motoneurons. Using confocal laser scanning microscope, we detected different number of close contacts from various sensory fibers, which were distributed unequally between the motoneurons innervating the protractor, retractor and inner muscles of the tongue. Based on the highest number of contacts and their closest location to the perikaryon, the glossopharyngeal-vagal nerves can exert the strongest effect on hypoglossal motoneurons and in agreement with earlier physiological results, they influence the protraction of the tongue. The second largest number of close appositions was provided by the hypoglossal and second cervical spinal afferents and they were located mostly on the proximal and middle parts of the dendrites of retractor motoneurons. Due to their small number and distal location, the trigeminal and vestibular terminals seem to have minor effects on direct activation of the hypoglossal motoneurons. We concluded that direct contacts between primary afferent terminals and hypoglossal motoneurons provide one of the possible morphological substrates of very quick feedback and feedforward modulation of the motor program during various stages of prey-catching behavior.


Assuntos
Nervo Hipoglosso/citologia , Bulbo/citologia , Neurônios Motores/citologia , Língua/inervação , Vias Aferentes/citologia , Animais , Nervos Cranianos/citologia , Atividade Motora , Comportamento Predatório , Ranidae , Língua/citologia
14.
Brain Res Bull ; 66(4-6): 532-5, 2005 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16144644

RESUMO

Phaseolus vulgaris leucoagglutinin (PHA-L) was injected into the individual vestibular nuclei of the rat to study their efferent connections. One of the major differences between the connections of these nuclei was found at the level of the mesencephalon: the eye-moving cranial nerve nuclei received the densest projection from the superior vestibular nucleus (SVN). In the present electron microscopic study, we have found that terminals of SVN origin established symmetric synaptic contacts in the oculomotor nucleus. More than two-thirds of PHA-L-labeled boutons terminated on dendrites, the rest of them established axosomatic contacts. Most of the labeled terminals were GABA-positive, supporting the results of previous physiological experiments, which showed inhibitory effects. In the mesencephalon, the other termination area was found in the red nucleus. The PHA-L-labeled boutons of SVN origin were in close contact with the perikarya and proximal dendrites of the magnocellular part of the red nucleus. The types of synaptic contacts and distribution of terminals of SVN origin were similar to those found in the oculomotor nucleus. Our results indicate that the SVN can modify the activity of the cerebellorubral and corticorubral pathways, exerting inhibitory action on the neurons of the red nucleus.


Assuntos
Vias Eferentes/ultraestrutura , Nervo Oculomotor/fisiologia , Núcleo Rubro/ultraestrutura , Núcleos Vestibulares/ultraestrutura , Animais , Microscopia Eletrônica , Microscopia Imunoeletrônica/métodos , Fito-Hemaglutininas/metabolismo , Ratos , Ratos Wistar , Núcleo Rubro/metabolismo , Núcleos Vestibulares/metabolismo , Ácido gama-Aminobutírico/metabolismo
15.
Brain Res Bull ; 66(4-6): 526-31, 2005 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16144643

RESUMO

Recent biochemical and histochemical analyses explored different components of the extracellular matrix (ECM) in the nervous system, and either permissive or non-permissive roles in neuronal development and regeneration were suggested. The aim of this study was to detect the distribution pattern of a few of these molecules in the nervous system of intact frogs and during nerve regeneration. The hyaluronan (HA) and tenascin C reactions were negative in the peripheral nerves, but appeared in their entry zones. In the CNS, different populations of neurons were surrounded with HA and tenascin C-positive material, forming a perineuronal net (PN). The phosphacan reaction was weakly positive in the PNS, and a moderate intensity was detected in the entry zone and in the PN. Laminin and fibronectin immunoreactivity was strong in the PNS, but laminin could not be detected in the CNS. In animals with cut and regenerating vestibulocochlear nerve, the distribution of the ECM molecules in the CNS and PNS characteristically changed from that of the normal pattern. Our results showed a non-homogenous distribution of ECM components in the frog nervous system that could be associated with their different roles in physiological and pathological processes.


Assuntos
Matriz Extracelular/fisiologia , Regeneração Nervosa/fisiologia , Sistema Nervoso/metabolismo , Animais , Axotomia/métodos , Fibronectinas/metabolismo , Ácido Hialurônico/metabolismo , Imuno-Histoquímica/métodos , Laminina/metabolismo , Sistema Nervoso/citologia , Neurônios/metabolismo , Rana esculenta , Tenascina/metabolismo , Fatores de Tempo , Nervo Vestibulococlear/fisiologia , Traumatismos do Nervo Vestibulococlear
16.
Brain Res Bull ; 119(Pt A): 19-24, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26444079

RESUMO

The prey-catching behavior of the frog is a complex, well-timed sequence of stimulus response chain of movements. After visual analysis of the prey, a size dependent program is selected in the motor pattern generator of the brainstem. Besides this predetermined feeding program, various direct and indirect sensory inputs provide flexible adjustment for the optimal contraction of the executive muscles. The aim of the present study was to investigate whether trigeminal primary afferents establish direct contacts with the jaw opening motoneurons innervated by the facial nerve. The experiments were carried out on Rana esculenta (Pelophylax esculentus), where the trigeminal and facial nerves were labeled simultaneously with different fluorescent dyes. Using a confocal laser scanning microscope, close appositions were detected between trigeminal afferent fibers and somatodendritic components of the facial motoneurons. Quantitative analysis revealed that the majority of close contacts were encountered on the dendrites of facial motoneurons and approximately 10% of them were located on the perikarya. We suggest that the identified contacts between the trigeminal afferents and facial motoneurons presented here may be one of the morphological substrate in the feedback and feedforward modulation of the rapidly changing activity of the jaw opening muscle during the prey-catching behavior.


Assuntos
Nervo Facial/citologia , Neurônios Motores/citologia , Neurônios Aferentes/citologia , Comportamento Predatório/fisiologia , Rana esculenta/anatomia & histologia , Núcleos do Trigêmeo/citologia , Vias Aferentes/citologia , Vias Aferentes/fisiologia , Animais , Dendritos , Nervo Facial/fisiologia , Arcada Osseodentária/anatomia & histologia , Arcada Osseodentária/fisiologia , Microscopia Confocal , Neurônios Motores/fisiologia , Neurônios Aferentes/fisiologia , Fotomicrografia , Rana esculenta/fisiologia , Núcleos do Trigêmeo/fisiologia
17.
Neural Regen Res ; 10(9): 1463-70, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26604908

RESUMO

We have previously found that unilateral labyrinthectomy is accompanied by modification of hyaluronan and chondroitin sulfate proteoglycan staining in the lateral vestibular nucleus of rats and the time course of subsequent reorganization of extracellular matrix assembly correlates to the restoration of impaired vestibular function. The tenascin-R has repelling effect on pathfinding during axonal growth/regrowth, and thus inhibits neural circuit repair. By using immunohistochemical method, we studied the modification of tenascin-R expression in the superior, medial, lateral, and descending vestibular nuclei of the rat following unilateral labyrinthectomy. On postoperative day 1, tenascin-R reaction in the perineuronal nets disappeared on the side of labyrinthectomy in the superior, lateral, medial, and rostral part of the descending vestibular nuclei. On survival day 3, the staining intensity of tenascin-R reaction in perineuronal nets recovered on the operated side of the medial vestibular nucleus, whereas it was restored by the time of postoperative day 7 in the superior, lateral and rostral part of the descending vestibular nuclei. The staining intensity of tenascin-R reaction remained unchanged in the caudal part of the descending vestibular nucleus bilaterally. Regional differences in the modification of tenascin-R expression presented here may be associated with different roles of individual vestibular nuclei in the compensatory processes. The decreased expression of the tenascin-R may suggest the extracellular facilitation of plastic modifications in the vestibular neural circuit after lesion of the labyrinthine receptors.

18.
Neurosci Lett ; 594: 122-6, 2015 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-25817362

RESUMO

The prepositus hypoglossi nucleus (PHN) is a mossy fiber-generating precerebellar nucleus of the brainstem, regarded as one of the neural integrators of the vestibulo-ocular reflex. The aim of the present work is to reveal the distribution of various molecular components of the extracellular matrix (ECM) in the prepositus hypoglossi nucleus by using histochemical and immunohistochemical methods. Our most characteristic finding was the accumulation of the ECM as perineuronal net (PNN) and axonal coat and we detected conspicuous differences between the magnocellular (PHNm) and parvocellular (PHNp) divisions of the PHN. PNNs were well developed in the PHNm, whereas the pericellular positivity was almost absent in the PHNp, here a diffuse ECM was observed. In the PHNm the perineuronal net explored the most intense staining with the aggrecan, and tenascin-R antibodies followed by the hyaluronan, then least with reactions for chondroitin sulfate-based proteoglycan components and HAPLN1 link protein reactions, but PNNs were not observed with the versican, neurocan, and brevican staining. We hypothesized that the difference in the ECM organization of the two subnuclei is associated with their different connections, cytoarchitecture, physiological properties and with their different functions in the vestibular system.


Assuntos
Tronco Encefálico/metabolismo , Matriz Extracelular/metabolismo , Animais , Tronco Encefálico/anatomia & histologia , Feminino , Histocitoquímica , Ratos Wistar
19.
J Comp Neurol ; 444(2): 115-28, 2002 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-11835185

RESUMO

The lectin Phaseolus vulgaris leucoagglutinin was injected into the frog lateral vestibular nucleus (LVN) to study its antero- and retrograde projections. The following new observations were made. 1) In the diencephalon, vestibular efferents innervate the thalamus in a manner similar to that of mammalian species. The projections show a preference for the anterior, central, and ventromedial thalamic nuclei. 2) In the mesencephalon, vestibular fibers terminate in the tegmental nuclei and the nucleus of medial longitudinal fascicle. 3) In the rhombencephalon, commissural and internuclear projections interconnect the vestibular nuclei. Some of the termination areas in the reticular formation can be homologized with the mammalian inferior olive and the nucleus prepositus hypoglossi. Another part of the vestibuloreticular projection may transmit vestibular impulses toward the vegetative centers of the brainstem. A relatively weak projection is detected in the spinal nucleus of the trigeminal nerve, dorsal column nuclei, and nucleus of the solitary tract. 4) In the spinal cord, vestibular terminals are most numerous in the ipsilateral ventral horn and in the triangular area of the dorsal horn. 5) The coincidence of retrogradely labeled cells with vestibular receptive areas suggests reciprocal interconnections between these structures and the LVN. 6) In seven places, the LVN projections overlap the receptive areas of proprioceptive fibers, suggesting a convergence of sensory modalities involved in the sense of balance.


Assuntos
Núcleo Vestibular Lateral/fisiologia , Animais , Mesencéfalo/anatomia & histologia , Mesencéfalo/fisiologia , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia , Rana esculenta , Rombencéfalo/anatomia & histologia , Rombencéfalo/fisiologia , Medula Espinal/anatomia & histologia , Medula Espinal/fisiologia , Núcleo Vestibular Lateral/anatomia & histologia
20.
J Comp Neurol ; 470(4): 409-21, 2004 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-14961566

RESUMO

We give an account of an effort to make quantitative morphological distinctions between motoneurons of the frog innervating functionally different groups of muscles involved in the movements of the tongue. The protractor, retractor, and inner muscles of the tongue were considered on the basis of their major action during the prey-catching behavior of the frog. Motoneurons were selectively labeled with cobalt lysin through the nerves of the individual muscles, and dendritic trees of successfully labeled neurons were reconstructed. Each motoneuron was characterized by 15 quantitative morphological parameters describing the size of the soma and dendritic tree and 12 orientation variables related to the shape and orientation of the dendritic field. The variables were subjected to multivariate discriminant analysis to find correlations between form and function of these motoneurons. According to the morphological parameters, the motoneurons were classified into three functionally different groups weighted by the shape of the perikaryon, mean diameter of stem dendrites, and mean length of dendritic segments. The most important orientation variables in the separation of three groups were the ellipses describing the shape of dendritic arborization in the horizontal, frontal, and sagittal planes of the brainstem. These findings indicate that characteristic geometry of the dendritic tree may have a preference for one array of fibers over another.


Assuntos
Neurônios Motores/fisiologia , Movimento/fisiologia , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Língua/fisiologia , Animais , Neurônios Motores/citologia , Músculo Esquelético/citologia , Rana esculenta , Língua/citologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa