Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Curr Genet ; 59(4): 251-64, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23974350

RESUMO

Like other microorganisms, free-living Candida albicans is mainly present in a three-dimensional multicellular structure, which is called a biofilm, rather than in a planktonic form. Candida albicans biofilms can be isolated from both abiotic and biotic surfaces at various locations within the host. As the number of abiotic implants, mainly bloodstream and urinary catheters, has been increasing, the number of biofilm-associated bloodstream or urogenital tract infections is also strongly increasing resulting in a raise in mortality. Cells within a biofilm structure show a reduced susceptibility to specific commonly used antifungals and, in addition, it has recently been shown that such cells are less sensitive to killing by components of our immune system. In this review, we summarize the most important insights in the mechanisms underlying biofilm-associated antifungal drug resistance and immune evasion strategies, focusing on the most recent advances in this area of research.


Assuntos
Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Candidíase/tratamento farmacológico , Farmacorresistência Fúngica/imunologia , Regulação Fúngica da Expressão Gênica/fisiologia , Evasão da Resposta Imune/imunologia , Biofilmes/crescimento & desenvolvimento , Candida albicans/imunologia , Candida albicans/fisiologia , Humanos
2.
Metab Eng ; 17: 68-81, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23518242

RESUMO

Engineering of metabolic pathways by genetic modification has been restricted largely to enzyme-encoding structural genes. The product yield of such pathways is a quantitative genetic trait. Out of 52 Saccharomyces cerevisiae strains phenotyped in small-scale fermentations, we identified strain CBS6412 as having unusually low glycerol production and higher ethanol yield as compared to an industrial reference strain. We mapped the QTLs underlying this quantitative trait with pooled-segregant whole-genome sequencing using 20 superior segregants selected from a total of 257. Plots of SNP variant frequency against SNP chromosomal position revealed one major and one minor locus. Downscaling of the major locus and reciprocal hemizygosity analysis identified an allele of SSK1, ssk1(E330N…K356N), expressing a truncated and partially mistranslated protein, as causative gene. The diploid CBS6412 parent was homozygous for ssk1(E330N…K356N). This allele affected growth and volumetric productivity less than the gene deletion. Introduction of the ssk1(E330N…K356N) allele in the industrial reference strain resulted in stronger reduction of the glycerol/ethanol ratio compared to SSK1 deletion and also compromised volumetric productivity and osmotolerance less. Our results show that polygenic analysis of yeast biodiversity can provide superior novel gene tools for metabolic engineering.


Assuntos
Etanol/metabolismo , Variação Genética/genética , Glicerol/metabolismo , Engenharia Metabólica/métodos , Locos de Características Quantitativas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Biodiversidade , Mapeamento Cromossômico/métodos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Sci Rep ; 8(1): 3958, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29500393

RESUMO

Multi-resistant microorganisms continue to challenge medicine and fuel the search for new antimicrobials. Here we show that essential oils and their components are a promising class of antifungals that can have specific anti-Candida activity via their vapour-phase. We quantify the vapour-phase-mediated antimicrobial activity (VMAA) of 175 essential oils and 37 essential oil components, representing more than a 1,000 unique molecules, against C. albicans and C. glabrata in a novel vapour-phase-mediated susceptibility assay. Approximately half of the tested essential oils and their components show growth-inhibitory VMAA. Moreover, an average greater activity was observed against the intrinsically more resistant C. glabrata, with essential oil component citronellal having a highly significant differential VMAA. In contrast, representatives of each class of antifungals currently used in clinical practice showed no VMAA. The vapour-phase-mediated susceptibility assay presented here thus allows for the simple detection of VMAA and can advance the search for novel (applications of existing) antimicrobials. This study represents the first comprehensive characterisation of essential oils and their components as a unique class of antifungals with antimicrobial properties that differentiate them from existing antifungal classes.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candida glabrata/efeitos dos fármacos , Gases , Óleos Voláteis/farmacologia , Cromatografia Gasosa-Espectrometria de Massas/métodos , Testes de Sensibilidade Microbiana , Óleos Voláteis/química , Estudo de Prova de Conceito , Microextração em Fase Sólida/métodos , Volatilização
4.
Front Immunol ; 9: 538, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29616035

RESUMO

Candida biofilms are a major cause of nosocomial morbidity and mortality. The mechanism by which Candida biofilms evade the immune system remains unknown. In this perspective, we develop a theoretical framework of the three, not mutually exclusive, models, which could explain biofilm evasion of host immunity. First, biofilms may exhibit properties of immunological silence, preventing immune activation. Second, biofilms may produce immune-deviating factors, converting effective immunity into ineffective immunity. Third, biofilms may resist host immunity, which would otherwise be effective. Using a murine subcutaneous biofilm model, we found that mice infected with biofilms developed sterilizing immunity effective when challenged with yeast form Candida. Despite the induction of effective anti-Candida immunity, no spontaneous clearance of the biofilm was observed. These results support the immune resistance model of biofilm immune evasion and demonstrate an asymmetric relationship between the host and biofilms, with biofilms eliciting effective immune responses yet being resistant to immunological clearance.


Assuntos
Biofilmes , Candida albicans/fisiologia , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Animais , Infecções Relacionadas a Cateter/imunologia , Feminino , Camundongos Endogâmicos C57BL
5.
Biotechnol Biofuels ; 6(1): 87, 2013 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-23759206

RESUMO

BACKGROUND: Genetic engineering of industrial microorganisms often suffers from undesirable side effects on essential functions. Reverse engineering is an alternative strategy to improve multifactorial traits like low glycerol/high ethanol yield in yeast fermentation. Previous rational engineering of this trait always affected essential functions like growth and stress tolerance. We have screened Saccharomyces cerevisiae biodiversity for specific alleles causing lower glycerol/higher ethanol yield, assuming higher compatibility with normal cellular functionality. Previous work identified ssk1E330N…K356N as causative allele in strain CBS6412, which displayed the lowest glycerol/ethanol ratio. RESULTS: We have now identified a unique segregant, 26B, that shows similar low glycerol/high ethanol production as the superior parent, but lacks the ssk1E330N…K356N allele. Using segregants from the backcross of 26B with the inferior parent strain, we applied pooled-segregant whole-genome sequence analysis and identified three minor quantitative trait loci (QTLs) linked to low glycerol/high ethanol production. Within these QTLs, we identified three novel alleles of known regulatory and structural genes of glycerol metabolism, smp1R110Q,P269Q, hot1P107S,H274Y and gpd1L164P as causative genes. All three genes separately caused a significant drop in the glycerol/ethanol production ratio, while gpd1L164P appeared to be epistatically suppressed by other alleles in the superior parent. The order of potency in reducing the glycerol/ethanol ratio of the three alleles was: gpd1L164P > hot1P107S,H274Y ≥ smp1R110Q,P269Q. CONCLUSIONS: Our results show that natural yeast strains harbor multiple specific alleles of genes controlling essential functions, that are apparently compatible with survival in the natural environment. These newly identified alleles can be used as gene tools for engineering industrial yeast strains with multiple subtle changes, minimizing the risk of negatively affecting other essential functions. The gene tools act at the transcriptional, regulatory or structural gene level, distributing the impact over multiple targets and thus further minimizing possible side-effects. In addition, the results suggest polygenic analysis of complex traits as a promising new avenue to identify novel components involved in cellular functions, including those important in industrial applications.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa