Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Theor Appl Genet ; 137(2): 48, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38345612

RESUMO

KEY MESSAGE: Characterisation and genetic mapping of a key gene defining root morphology in bread wheat. Root morphology is central to plants for the efficient uptake up of soil water and mineral nutrients. Here we describe a conditional mutant of hexaploid wheat (Triticum aestivum L.) that when grown in soil with high Ca2+ develops a larger rhizosheath accompanied with shorter roots than the wild type. In wheat, rhizosheath size is a reliable surrogate for root hair length and this was verified in the mutant which possessed longer root hairs than the wild type when grown in high Ca2+ soil. We named the mutant Stumpy and showed it to be due to a single semi-dominant mutation. The short root phenotype at high Ca2+ was due to reduced cellular elongation which might also explain the long root hair phenotype. Analysis of root cell walls showed that the polysaccharide composition of Stumpy roots is remodelled when grown at non-permissive (high) Ca2+ concentrations. The mutation mapped to chromosome 7B and sequencing of the 7B chromosomes in both wild type and Stumpy identified a candidate gene underlying the Stumpy mutation. As part of the process to determine whether the candidate gene was causative, we identified wheat lines in a Cadenza TILLING population with large rhizosheaths but accompanied with normal root length. This finding illustrates the potential of manipulating the gene to disconnect root length from root hair length as a means of developing wheat lines with improved efficiency of nutrient and water uptake. The Stumpy mutant will be valuable for understanding the mechanisms that regulate root morphology in wheat.


Assuntos
Solo , Triticum , Triticum/metabolismo , Mutação , Mapeamento Cromossômico , Água/metabolismo , Raízes de Plantas/genética
2.
Plant Physiol ; 187(4): 2279-2295, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34618027

RESUMO

Certain soil microorganisms can improve plant growth, and practices that encourage their proliferation around the roots can boost production and reduce reliance on agrochemicals. The beneficial effects of the microbial inoculants currently used in agriculture are inconsistent or short-lived because their persistence in soil and on roots is often poor. A complementary approach could use root exudates to recruit beneficial microbes directly from the soil and encourage inoculant proliferation. However, it is unclear whether the release of common organic metabolites can alter the root microbiome in a consistent manner and if so, how those changes vary throughout the whole root system. In this study, we altered the expression of transporters from the ALUMINUM-ACTIVATED MALATE TRANSPORTER and the MULTIDRUG AND TOXIC COMPOUND EXTRUSION families in rice (Oryza sativa L.) and wheat (Triticum aestivum L.) and tested how the subsequent release of their substrates (simple organic anions, including malate, citrate, and γ-amino butyric acid) from root apices affected the root microbiomes. We demonstrate that these exudate compounds, separately and in combination, significantly altered microbiome composition throughout the root system. However, the root type (seminal or nodal), position along the roots (apex or base), and soil type had a greater influence on microbiome structure than the exudates. These results reveal that the root microbiomes of important cereal species can be manipulated by altering the composition of root exudates, and support ongoing attempts to improve plant production by manipulating the root microbiome.


Assuntos
Microbiota/fisiologia , Oryza/metabolismo , Exsudatos de Plantas/metabolismo , Raízes de Plantas/microbiologia , Rizosfera , Microbiologia do Solo , Triticum/metabolismo , Produtos Agrícolas/metabolismo , Produtos Agrícolas/microbiologia , Solo/química
3.
Mol Plant Microbe Interact ; 34(5): 470-490, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33471549

RESUMO

Legumes form two types of root organs in response to signals from microbes, namely, nodules and root galls. In the field, these interactions occur concurrently and often interact with each other. The outcomes of these interactions vary and can depend on natural variation in rhizobia and nematode populations in the soil as well as abiotic conditions. While rhizobia are symbionts that contribute fixed nitrogen to their hosts, parasitic root-knot nematodes (RKN) cause galls as feeding structures that consume plant resources without a contribution to the plant. Yet, the two interactions share similarities, including rhizosphere signaling, repression of host defense responses, activation of host cell division, and differentiation, nutrient exchange, and alteration of root architecture. Rhizobia activate changes in defense and development through Nod factor signaling, with additional functions of effector proteins and exopolysaccharides. RKN inject large numbers of protein effectors into plant cells that directly suppress immune signaling and manipulate developmental pathways. This review examines the molecular control of legume interactions with rhizobia and RKN to elucidate shared and distinct mechanisms of these root-microbe interactions. Many of the molecular pathways targeted by both organisms overlap, yet recent discoveries have singled out differences in the spatial control of expression of developmental regulators that may have enabled activation of cortical cell division during nodulation in legumes. The interaction of legumes with symbionts and parasites highlights the importance of a comprehensive view of root-microbe interactions for future crop management and breeding strategies.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Fabaceae , Rhizobium , Melhoramento Vegetal , Raízes de Plantas , Rizosfera , Simbiose
4.
New Phytol ; 229(5): 2525-2534, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33067828

RESUMO

Legumes form a symbiosis with atmospheric nitrogen (N2 )-fixing soil rhizobia, resulting in new root organs called nodules that enable N2 -fixation. Nodulation is a costly process that is tightly regulated by the host through autoregulation of nodulation (AON) and nitrate-dependent regulation of nodulation. Both pathways require legume-specific CLAVATA/ESR-related (CLE) peptides. Nitrogen-induced nodulation-suppressing CLE peptides have not previously been investigated in Medicago truncatula, for which only rhizobia-induced MtCLE12 and MtCLE13 have been characterised. Here, we report on novel peptides MtCLE34 and MtCLE35 in nodulation control. The nodulation-suppressing CLE peptides of five legume species were classified into three clades based on sequence homology and phylogeny. This approached identified MtCLE34 and MtCLE35 and four new CLE peptide orthologues of Pisum sativum. Whereas MtCLE12 and MtCLE13 are induced by rhizobia, MtCLE34 and MtCLE35 respond to both rhizobia and nitrate. MtCLE34 was identified as a pseudogene lacking a functional CLE-domain. MtCLE35 was found to inhibit nodulation in a SUNN- and RDN1-dependent manner via overexpression analysis. Together, our findings indicate that MtCLE12 and MtCLE13 have a specific role in AON, while MtCLE35 regulates nodule numbers in response to both rhizobia and nitrate. MtCLE34 likely had a similar role to MtCLE35, but its function was lost due to a premature nonsense mutation.


Assuntos
Medicago truncatula , Rhizobium , Regulação da Expressão Gênica de Plantas , Medicago truncatula/genética , Medicago truncatula/metabolismo , Nitratos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nodulação/genética , Nódulos Radiculares de Plantas/metabolismo , Simbiose
5.
Ann Bot ; 128(4): 441-452, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34297052

RESUMO

BACKGROUND AND AIMS: Nitrogen fixation in legumes requires tight control of carbon and nitrogen balance. Thus, legumes control nodule numbers via an autoregulation mechanism. 'Autoregulation of nodulation' mutants super-nodulate are thought to be carbon-limited due to the high carbon-sink strength of excessive nodules. This study aimed to examine the effect of increasing carbon supply on the performance of super-nodulation mutants. METHODS: We compared the responses of Medicago truncatula super-nodulation mutants (sunn-4 and rdn1-1) and wild type to five CO2 levels (300-850 µmol mol-1). Nodule formation and nitrogen fixation were assessed in soil-grown plants at 18 and 42 d after sowing. KEY RESULTS: Shoot and root biomass, nodule number and biomass, nitrogenase activity and fixed nitrogen per plant of all genotypes increased with increasing CO2 concentration and reached a maximum at 700 µmol mol-1. While the sunn-4 mutant showed strong growth retardation compared with wild-type plants, elevated CO2 increased shoot biomass and total nitrogen content of the rdn1-1 mutant up to 2-fold. This was accompanied by a 4-fold increase in nitrogen fixation capacity in the rdn1-1 mutant. CONCLUSIONS: These results suggest that the super-nodulation phenotype per se did not limit growth. The additional nitrogen fixation capacity of the rdn1-1 mutant may enhance the benefit of elevated CO2 for plant growth and N2 fixation.


Assuntos
Medicago truncatula , Dióxido de Carbono , Medicago truncatula/genética , Morfogênese , Nitrogênio , Fixação de Nitrogênio , Nódulos Radiculares de Plantas/genética , Simbiose
6.
New Phytol ; 226(6): 1809-1821, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32048296

RESUMO

Root system architecture (RSA) influences the effectiveness of resources acquisition from soils but the genetic networks that control RSA remain largely unclear. We used rhizoboxes, X-ray computed tomography, grafting, auxin transport measurements and hormone quantification to demonstrate that Arabidopsis and Medicago CEP (C-TERMINALLY ENCODED PEPTIDE)-CEP RECEPTOR signalling controls RSA, the gravitropic set-point angle (GSA) of lateral roots (LRs), auxin levels and auxin transport. We showed that soil-grown Arabidopsis and Medicago CEP receptor mutants have a narrower RSA, which results from a steeper LR GSA. Grafting showed that CEPR1 in the shoot controls GSA. CEP receptor mutants exhibited an increase in rootward auxin transport and elevated shoot auxin levels. Consistently, the application of auxin to wild-type shoots induced a steeper GSA and auxin transport inhibitors counteracted the CEP receptor mutant's steep GSA phenotype. Concordantly, CEP peptides increased GSA and inhibited rootward auxin transport in wild-type but not in CEP receptor mutants. The results indicated that CEP-CEP receptor-dependent signalling outputs in Arabidopsis and Medicago control overall RSA, LR GSA, shoot auxin levels and rootward auxin transport. We propose that manipulating CEP signalling strength or CEP receptor downstream targets may provide means to alter RSA.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Medicago/genética , Medicago/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Receptores de Peptídeos/metabolismo
7.
J Exp Bot ; 71(4): 1562-1573, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31738415

RESUMO

The development of root nodules leads to an increased auxin response in early nodule primordia, which is mediated by changes in acropetal auxin transport in some legumes. Here, we investigated the role of root basipetal auxin transport during nodulation. Rhizobia inoculation significantly increased basipetal auxin transport in both Medicago truncatula and Lotus japonicus. In M. truncatula, this increase was dependent on functional Nod factor signalling through NFP, NIN, and NSP2, as well as ethylene signalling through SKL. To test whether increased basipetal auxin transport is required for nodulation, we examined a loss-of-function mutant of the M. truncatula PIN2 gene. The Mtpin2 mutant exhibited a reduction in basipetal auxin transport and an agravitropic phenotype. Inoculation of Mtpin2 roots with rhizobia still led to a moderate increase in basipetal auxin transport, but the mutant nodulated normally. No clear differences in auxin response were observed during nodule development. Interestingly, inoculation of wild-type roots increased lateral root numbers, whereas inoculation of Mtpin2 mutants resulted in reduced lateral root numbers compared with uninoculated roots. We conclude that the MtPIN2 auxin transporter is involved in basipetal auxin transport, that its function is not essential for nodulation, but that it plays an important role in the control of lateral root development.


Assuntos
Ácidos Indolacéticos/metabolismo , Medicago truncatula , Proteínas de Plantas , Nodulação , Transporte Biológico , Medicago truncatula/genética , Medicago truncatula/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Simbiose
8.
Plant Cell Environ ; 42(5): 1747-1757, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30512188

RESUMO

We investigated the role of three autoregulation of nodulation (AON) genes in regulating of root and shoot phenotypes when responding to changing nitrogen availability in the model legume, Medicago truncatula. These genes, RDN1-1 (ROOT DETERMINED NODULATION1-1), SUNN (SUPER NUMERIC NODULES), and LSS (LIKE SUNN SUPERNODULAOR), act in a systemic signalling pathway that limits nodule numbers. This pathway is also influenced by nitrogen availability, but it is not well known if AON genes control root and shoot phenotypes other than nodule numbers in response to nitrogen. We conducted a controlled glasshouse experiment to compare root and shoot phenotypes of mutants and wild type plants treated with four nitrate concentrations. All AON mutants showed altered rhizobia-independent phenotypes, including biomass allocation, lateral root length, lateral root density, and root length ratio. In response to nitrogen, uninoculated AON mutants were less plastic than the wild type in controlling root mass ratio, root length ratio, and lateral root length. This suggests that AON genes control nodulation-independent root architecture phenotypes in response to nitrogen. The phenotypic differences between wild type and AON mutants were exacerbated by the presence of nodules, pointing to resource competition as an additional mechanism affecting root and shoot responses to nitrogen.


Assuntos
Medicago truncatula/genética , Nitrogênio/metabolismo , Nodulação/genética , Transdução de Sinais/genética , Adaptação Fisiológica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/fisiologia , Medicago truncatula/metabolismo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/metabolismo , Brotos de Planta/anatomia & histologia , Brotos de Planta/metabolismo , Rhizobium , Nódulos Radiculares de Plantas/genética , Simbiose
9.
J Exp Bot ; 69(2): 229-244, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-28992078

RESUMO

Most legumes can form a unique type of lateral organ on their roots: root nodules. These structures host symbiotic nitrogen-fixing bacteria called rhizobia. Several different types of nodules can be found in nature, but the two best-studied types are called indeterminate and determinate nodules. These two types differ with respect to the presence or absence of a persistent nodule meristem, which consistently correlates with the cortical cell layers giving rise to the nodule primordia. Similar to other plant developmental processes, auxin signalling overlaps with the site of organ initiation and meristem activity. Here, we review how auxin contributes to early nodule development. We focus on changes in auxin transport, signalling, and metabolism during nodule initiation, describing both experimental evidence and computer modelling. We discuss how indeterminate and determinate nodules may differ in their mechanisms for generating localized auxin response maxima and highlight outstanding questions for future research.


Assuntos
Transporte Biológico , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Transdução de Sinais
10.
Plant Cell ; 27(8): 2210-26, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26253705

RESUMO

Initiation of symbiotic nodules in legumes requires cytokinin signaling, but its mechanism of action is largely unknown. Here, we tested whether the failure to initiate nodules in the Medicago truncatula cytokinin perception mutant cre1 (cytokinin response1) is due to its altered ability to regulate auxin transport, auxin accumulation, and induction of flavonoids. We found that in the cre1 mutant, symbiotic rhizobia cannot locally alter acro- and basipetal auxin transport during nodule initiation and that these mutants show reduced auxin (indole-3-acetic acid) accumulation and auxin responses compared with the wild type. Quantification of flavonoids, which can act as endogenous auxin transport inhibitors, showed a deficiency in the induction of free naringenin, isoliquiritigenin, quercetin, and hesperetin in cre1 roots compared with wild-type roots 24 h after inoculation with rhizobia. Coinoculation of roots with rhizobia and the flavonoids naringenin, isoliquiritigenin, and kaempferol, or with the synthetic auxin transport inhibitor 2,3,5,-triiodobenzoic acid, rescued nodulation efficiency in cre1 mutants and allowed auxin transport control in response to rhizobia. Our results suggest that CRE1-dependent cytokinin signaling leads to nodule initiation through the regulation of flavonoid accumulation required for local alteration of polar auxin transport and subsequent auxin accumulation in cortical cells during the early stages of nodulation.


Assuntos
Flavonoides/metabolismo , Ácidos Indolacéticos/metabolismo , Medicago truncatula/genética , Mutação , Proteínas de Plantas/genética , Nodulação/genética , Transporte Biológico/efeitos dos fármacos , Chalconas/metabolismo , Chalconas/farmacologia , Citocininas/metabolismo , Flavanonas/metabolismo , Flavanonas/farmacologia , Flavonoides/farmacologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Quempferóis/metabolismo , Quempferóis/farmacologia , Medicago truncatula/metabolismo , Medicago truncatula/microbiologia , Microscopia de Fluorescência , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/metabolismo , Nodulação/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sinorhizobium meliloti/fisiologia , Simbiose/efeitos dos fármacos , Ácidos Tri-Iodobenzoicos/farmacologia
11.
Mol Plant Microbe Interact ; 30(9): 691-700, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28510484

RESUMO

The root-infecting necrotrophic fungal pathogen Rhizoctoniasolani causes significant disease to all the world's major food crops. As a model for pathogenesis of legumes, we have examined the interaction of R. solani AG8 with Medicago truncatula. RNAseq analysis of the moderately resistant M. truncatula accession A17 and highly susceptible sickle (skl) mutant (defective in ethylene sensing) identified major early transcriptional reprogramming in A17. Responses specific to A17 included components of ethylene signaling, reactive oxygen species metabolism, and consistent upregulation of the isoflavonoid biosynthesis pathway. Mass spectrometry revealed accumulation of the isoflavonoid-related compounds liquiritigenin, formononetin, medicarpin, and biochanin A in A17. Overexpression of an isoflavone synthase in M. truncatula roots increased isoflavonoid accumulation and resistance to R. solani. Addition of exogenous medicarpin suggested this phytoalexin may be one of several isoflavonoids required to contribute to resistance to R. solani. Together, these results provide evidence for the role of ethylene-mediated accumulation of isoflavonoids during defense against root pathogens in legumes. The involvement of ethylene signaling and isoflavonoids in the regulation of both symbiont-legume and pathogen-legume interactions in the same tissue may suggest tight regulation of these responses are required in the root tissue.


Assuntos
Resistência à Doença , Etilenos/metabolismo , Isoflavonas/metabolismo , Medicago truncatula/microbiologia , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Rhizoctonia/fisiologia , Transdução de Sinais , Vias Biossintéticas/genética , Resistência à Doença/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Medicago truncatula/genética , Medicago truncatula/imunologia , Medicago truncatula/metabolismo , Metaboloma/genética , Mutação/genética , Fenótipo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Rhizoctonia/crescimento & desenvolvimento , Transcrição Gênica
12.
Plant Cell Environ ; 39(4): 883-96, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26523414

RESUMO

All higher plants show developmental plasticity in response to the availability of nitrogen (N) in the soil. In legumes, N starvation causes the formation of root nodules, where symbiotic rhizobacteria fix atmospheric N2 for the host in exchange for fixed carbon (C) from the shoot. Here, we tested whether plastic responses to internal [N] of legumes are altered by their symbionts. Glasshouse experiments compared root phenotypes of three legumes, Medicago truncatula, Medicago sativa and Trifolium subterraneum, inoculated with their compatible symbiont partners and grown under four nitrate levels. In addition, six strains of rhizobia, differing in their ability to fix N2 in M. truncatula, were compared to test if plastic responses to internal [N] were dependent on the rhizobia or N2 -fixing capability of the nodules. We found that the presence of rhizobia affected phenotypic plasticity of the legumes to internal [N], particularly in root length and root mass ratio (RMR), in a plant species-dependent way. While root length responses of M. truncatula to internal [N] were dependent on the ability of rhizobial symbionts to fix N2 , RMR response to internal [N] was dependent only on initiation of nodules, irrespective of N2 -fixing ability of the rhizobia strains.


Assuntos
Medicago truncatula/anatomia & histologia , Fixação de Nitrogênio/efeitos dos fármacos , Nitrogênio/farmacologia , Nódulos Radiculares de Plantas/anatomia & histologia , Trifolium/anatomia & histologia , Medicago truncatula/efeitos dos fármacos , Medicago truncatula/microbiologia , Nitratos/farmacologia , Tamanho do Órgão/efeitos dos fármacos , Fenótipo , Nodulação/efeitos dos fármacos , Rhizobium/efeitos dos fármacos , Rhizobium/fisiologia , Nódulos Radiculares de Plantas/efeitos dos fármacos , Nódulos Radiculares de Plantas/microbiologia , Especificidade da Espécie , Trifolium/efeitos dos fármacos , Trifolium/microbiologia
13.
14.
Int J Mol Sci ; 17(7)2016 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-27384556

RESUMO

The presence of nitrogen inhibits legume nodule formation, but the mechanism of this inhibition is poorly understood. We found that 2.5 mM nitrate and above significantly inhibited nodule initiation but not root hair curling in Medicago trunatula. We analyzed protein abundance in M. truncatula roots after treatment with either 0 or 2.5 mM nitrate in the presence or absence of its symbiont Sinorhizobium meliloti after 1, 2 and 5 days following inoculation. Two-dimensional gel electrophoresis combined with mass spectrometry was used to identify 106 differentially accumulated proteins responding to nitrate addition, inoculation or time point. While flavonoid-related proteins were less abundant in the presence of nitrate, addition of Nod gene-inducing flavonoids to the Sinorhizobium culture did not rescue nodulation. Accumulation of auxin in response to rhizobia, which is also controlled by flavonoids, still occurred in the presence of nitrate, but did not localize to a nodule initiation site. Several of the changes included defense- and redox-related proteins, and visualization of reactive oxygen species indicated that their induction in root hairs following Sinorhizobium inoculation was inhibited by nitrate. In summary, the presence of nitrate appears to inhibit nodulation via multiple pathways, including changes to flavonoid metabolism, defense responses and redox changes.


Assuntos
Medicago truncatula/metabolismo , Nitratos/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Transdução de Sinais/fisiologia , Sinorhizobium meliloti/metabolismo , Simbiose/fisiologia , Rizoma/metabolismo , Rizoma/microbiologia
15.
BMC Plant Biol ; 14: 174, 2014 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-24952658

RESUMO

BACKGROUND: The Medicago truncatula 2HA seed line is highly embryogenic while the parental line Jemalong rarely produces embryos. The 2HA line was developed from one of the rare Jemalong regenerates and this method for obtaining a highly regenerable genotype in M. truncatula is readily reproducible suggesting an epigenetic mechanism. Microarray transcriptomic analysis showed down regulation of an ETHYLENE INSENSITIVE 3-like gene in 2HA callus which provided an approach to investigating epigenetic regulation of genes related to ethylene signalling and the 2HA phenotype. Ethylene is involved in many developmental processes including somatic embryogenesis (SE) and is associated with stress responses. RESULTS: Microarray transcriptomic analysis showed a significant number of up-regulated transcripts in 2HA tissue culture, including nodule and embryo specific genes and transposon-like genes, while only a few genes were down-regulated, including an EIN3-like gene we called MtEIL1. This reduced expression was associated with ethylene insensitivity of 2HA plants that was further investigated. The weak ethylene insensitivity affected root and nodule development. Sequencing of MtEIL1 found no difference between 2HA and wild-type plants. DNA methylation analysis of MtEIL1 revealed significant difference between 2HA and wild-type plants. Tiling arrays demonstrated an elevated level of miRNA in 2HA plants that hybridised to the antisense strand of the MtEIL1 gene. AFLP-like methylation profiling revealed more differences in DNA methylation between 2HA and wild-type. Segregation analysis demonstrated the recessive nature of the eil1 phenotype and the dominant nature of the SE trait. CONCLUSIONS: We have demonstrated that EIL1 of Medicago truncatula (MtEIL1) is epigenetically silenced in the 2HA seed line. The possible cause is an elevated level of miRNA that targets its 3'UTR and is also associated with DNA methylation of MtEIL1. Down regulation of MtEIL1 makes it possible to form nodules in the presence of ethylene and affects root growth under normal conditions. Segregation analysis showed no association between MtEIL1 expression and SE in culture but the role and mechanism of ethylene signalling in the process of plant regeneration through SE requires further investigation. The work also suggests that epigenetic changes to a particular gene induced in culture can be fixed in regenerated plants.


Assuntos
Epigênese Genética/efeitos dos fármacos , Etilenos/farmacologia , Medicago truncatula/efeitos dos fármacos , Medicago truncatula/genética , Mutação/genética , Segregação de Cromossomos/efeitos dos fármacos , Segregação de Cromossomos/genética , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , MicroRNAs/metabolismo , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Especificidade de Órgãos/efeitos dos fármacos , Especificidade de Órgãos/genética , Fenótipo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Sementes/efeitos dos fármacos , Sementes/genética , Fatores de Tempo
16.
New Phytol ; 202(2): 582-593, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24443934

RESUMO

LONELY GUY (LOG) genes encode cytokinin riboside 5'-monophosphate phosphoribohydrolases and are directly involved in the activation of cytokinins. To assess whether LOG proteins affect the influence of cytokinin on nodulation, we studied two LOG genes of Medicago truncatula. Expression analysis showed that MtLOG1 and MtLOG2 were upregulated during nodulation in a CRE1-dependent manner. Expression was mainly localized in the dividing cells of the nodule primordium. In addition, RNA interference revealed that MtLOG1 is involved in nodule development and that the gene plays a negative role in lateral root development. Ectopic expression of MtLOG1 resulted in a change in cytokinin homeostasis, triggered cytokinin-inducible genes and produced roots with enlarged vascular tissues and shortened primary roots. In addition, those 35S:LOG1 roots also displayed fewer nodules than the wild-type. This inhibition in nodule formation was local, independent of the SUPER NUMERIC NODULES gene, but coincided with an upregulation of the MtCLE13 gene, encoding a CLAVATA3/EMBRYO SURROUNDING REGION peptide. In conclusion, we demonstrate that in M. truncatula LOG proteins might be implicated in nodule primordium development and lateral root formation.


Assuntos
Citocininas/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Medicago truncatula/genética , Proteínas de Plantas/genética , Nodulação/genética , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Aminoidrolases , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citocininas/metabolismo , Medicago truncatula/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Regulação para Cima
17.
J Chem Ecol ; 40(7): 770-90, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25052910

RESUMO

The symbiosis between legumes and nitrogen fixing bacteria called rhizobia leads to the formation of root nodules. Nodules are highly organized root organs that form in response to Nod factors produced by rhizobia, and they provide rhizobia with a specialized niche to optimize nutrient exchange and nitrogen fixation. Nodule development and invasion by rhizobia is locally controlled by feedback between rhizobia and the plant host. In addition, the total number of nodules on a root system is controlled by a systemic mechanism termed 'autoregulation of nodulation'. Both the local and the systemic control of nodulation are regulated by phytohormones. There are two mechanisms by which phytohormone signalling is altered during nodulation: through direct synthesis by rhizobia and through indirect manipulation of the phytohormone balance in the plant, triggered by bacterial Nod factors. Recent genetic and physiological evidence points to a crucial role of Nod factor-induced changes in the host phytohormone balance as a prerequisite for successful nodule formation. Phytohormones synthesized by rhizobia enhance symbiosis effectiveness but do not appear to be necessary for nodule formation. This review provides an overview of recent advances in our understanding of the roles and interactions of phytohormones and signalling peptides in the regulation of nodule infection, initiation, positioning, development, and autoregulation. Future challenges remain to unify hormone-related findings across different legumes and to test whether hormone perception, response, or transport differences among different legumes could explain the variety of nodules types and the predisposition for nodule formation in this plant family. In addition, the molecular studies carried out under controlled conditions will need to be extended into the field to test whether and how phytohormone contributions by host and rhizobial partners affect the long term fitness of the host and the survival and competition of rhizobia in the soil. It also will be interesting to explore the interaction of hormonal signalling pathways between rhizobia and plant pathogens.


Assuntos
Fabaceae/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Rhizobium/fisiologia , Fabaceae/metabolismo , Fixação de Nitrogênio , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Transdução de Sinais , Simbiose
18.
Plant Physiol ; 159(1): 489-500, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22399647

RESUMO

We tested whether a gene regulating nodule number in Medicago truncatula, Super Numeric Nodules (SUNN ), is involved in root architecture responses to carbon (C) and nitrogen (N) and whether this is mediated by changes in shoot-to-root auxin transport. Nodules and lateral roots are root organs that are under the control of nutrient supply, but how their architecture is regulated in response to nutrients is unclear. We treated wild-type and sunn-1 seedlings with four combinations of low or increased N (as nitrate) and C (as CO(2)) and determined responses in C/N partitioning, plant growth, root and nodule density, and changes in auxin transport. In both genotypes, nodule density was negatively correlated with tissue N concentration, while only the wild type showed significant correlations between N concentration and lateral root density. Shoot-to-root auxin transport was negatively correlated with shoot N concentration in the wild type but not in the sunn-1 mutant. In addition, the ability of rhizobia to alter auxin transport depended on N and C treatment as well as the SUNN gene. Nodule and lateral root densities were negatively correlated with auxin transport in the wild type but not in the sunn-1 mutant. Our results suggest that SUNN is required for the modulation of shoot-to-root auxin transport in response to altered N tissue concentrations in the absence of rhizobia and that this controls lateral root density in response to N. The control of nodule density in response to N is more likely to occur locally in the root.


Assuntos
Ácidos Indolacéticos/metabolismo , Medicago truncatula/genética , Nitrogênio/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Transporte Biológico , Carbono/metabolismo , Carbono/farmacologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Medicago truncatula/crescimento & desenvolvimento , Medicago truncatula/metabolismo , Medicago truncatula/microbiologia , Fenótipo , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Brotos de Planta/metabolismo , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Sinorhizobium meliloti/crescimento & desenvolvimento
19.
J Chem Ecol ; 39(2): 283-97, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23397456

RESUMO

Flavonoids are biologically active low molecular weight secondary metabolites that are produced by plants, with over 10,000 structural variants now reported. Due to their physical and biochemical properties, they interact with many diverse targets in subcellular locations to elicit various activities in microbes, plants, and animals. In plants, flavonoids play important roles in transport of auxin, root and shoot development, pollination, modulation of reactive oxygen species, and signalling of symbiotic bacteria in the legume Rhizobium symbiosis. In addition, they possess antibacterial, antifungal, antiviral, and anticancer activities. In the plant, flavonoids are transported within and between plant tissues and cells, and are specifically released into the rhizosphere by roots where they are involved in plant/plant interactions or allelopathy. Released by root exudation or tissue degradation over time, both aglycones and glycosides of flavonoids are found in soil solutions and root exudates. Although the relative role of flavonoids in allelopathic interference has been less well-characterized than that of some secondary metabolites, we present classic examples of their involvement in autotoxicity and allelopathy. We also describe their activity and fate in the soil rhizosphere in selected examples involving pasture legumes, cereal crops, and ferns. Potential research directions for further elucidation of the specific role of flavonoids in soil rhizosphere interactions are considered.


Assuntos
Flavonoides/metabolismo , Feromônios/metabolismo , Plantas/metabolismo , Flavonoides/química , Feromônios/química , Fenômenos Fisiológicos Vegetais , Plantas/química , Rhizobium/fisiologia , Rizosfera , Simbiose
20.
J Chem Ecol ; 39(7): 826-39, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23892542

RESUMO

Plants show phenotypic plasticity in response to changing or extreme abiotic environments; but over millions of years they also have co-evolved to respond to the presence of soil microbes. Studies on phenotypic plasticity in plants have focused mainly on the effects of the changing environments on plants' growth and survival. Evidence is now accumulating that the presence of microbes can alter plant phenotypic plasticity in a broad range of traits in response to a changing environment. In this review, we discuss the effects of microbes on plant phenotypic plasticity in response to changing environmental conditions, and how this may affect plant fitness. By using a range of specific plant-microbe interactions as examples, we demonstrate that one way that microbes can alleviate the effect of environmental stress on plants and thus increase plant fitness is to remove the stress, e.g., nutrient limitation, directly. Furthermore, microbes indirectly affect plant phenotypic plasticity and fitness through modulation of plant development and defense responses. In doing so, microbes affect fitness by both increasing or decreasing the degree of phenotypic plasticity, depending on the phenotype and the environmental stress studied, with no clear difference between the effect of prokaryotic and eukaryotic microbes in general. Additionally, plants have the ability to modulate microbial behaviors, suggesting that they manipulate bacteria, enhancing interactions that help them cope with stressful environments. Future challenges remain in the identification of the many microbial signals that modulate phenotypic plasticity, the characterization of plant genes, e.g. receptors, that mediate the microbial effects on plasticity, and the elucidation of the molecular mechanisms that link phenotypic plasticity with fitness. The characterization of plant and microbial mutants defective in signal synthesis or perception, together with carefully designed glasshouse or field experiments that test various environmental stresses will be necessary to understand the link between molecular mechanisms controlling plastic phenotypes with the resulting effects on plant fitness.


Assuntos
Adaptação Biológica , Fenótipo , Plantas/microbiologia , Simbiose , Evolução Biológica , Aptidão Genética , Plantas/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa