Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Prosthet Dent ; 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36868987

RESUMO

STATEMENT OF PROBLEM: The type of intraoral scanner (IOS), region of the implant, and extent of the scanned area have been reported to affect scan accuracy. However, knowledge of the accuracy of IOSs is scarce when digitizing different partially edentulous situations either with complete- or partial-arch scans. PURPOSE: The purpose of this in vitro study was to investigate the scan accuracy and time efficiency of complete- and partial-arch scans of different partially edentulous situations with 2 implants and 2 different IOSs. MATERIAL AND METHODS: Three maxillary models with implant spaces at the lateral incisor sites (anterior 4-unit), right first premolar and right first molar sites (posterior 3-unit), or right canine and right first molar sites (posterior 4-unit) were fabricated. After placing implants (Straumann S RN) and scan bodies (CARES Mono Scanbody), models were digitized by using an optical scanner (ATOS Capsule 200MV120) to generate reference standard tessellation language (STL) files. Complete- or partial-arch scans (test scans) of each model were then performed by using 2 IOSs (Primescan [PS] and TRIOS 3 [T3]) (n=14). The duration of the scans and the time needed to postprocess the STL file until the design could be started were also recorded. A metrology-grade analysis software program (GOM Inspect 2018) was used to superimpose test scan STLs over the reference STL to calculate 3D distance, interimplant distance, and angular (mesiodistal and buccopalatal) deviations. Nonparametric 2-way analysis of variance followed by Mann-Whitney tests with Holm correction were used for trueness, precision, and time efficiency analyses (α=.05). RESULTS: The interaction between IOSs and scanned area only affected the precision of the scans when angular deviation data were considered (P≤.002). Trueness of the scans was affected by IOSs when 3D distance, interimplant distance, and mesiodistal angular deviations were considered. The scanned area affected only 3D distance deviations (P≤.006). IOSs and scanned area significantly affected the precision of scans when 3D distance, interimplant distance, and mesiodistal angular deviations were considered, while only IOSs significantly affected buccopalatal angular deviations (P≤.040). Scans from PS had higher accuracy when 3D distance deviations were considered for the anterior 4-unit and posterior 3-unit models (P≤.030), when interimplant distance deviations were considered for complete-arch scans of the posterior 3-unit model (P≤.048), and when mesiodistal angular deviations were considered in the posterior 3-unit model (P≤.050). Partial-arch scans had higher accuracy when 3D distance deviations of the posterior 3-unit model were considered (P≤.002). PS had higher time efficiency regardless of the model and scanned area (P≤.010), while partial-arch scans had higher time efficiency when scanning the posterior 3-unit and posterior 4-unit models with PS and the posterior 3-unit model with T3 (P≤.050). CONCLUSIONS: Partial-arch scans with PS had similar or better accuracy and time efficiency than other tested scanned area-scanner pairs in tested partial edentulism situations.

2.
Clin Implant Dent Relat Res ; 25(3): 502-510, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36762495

RESUMO

BACKGROUND: Accuracy of intraoral implant scans may be affected by the region of the implant and the type of the intraoral scanner (IOSs). However, there is limited knowledge on the scan accuracy of multiple implants placed for an implant-supported fixed partial denture (FPD) in different partially edentulous situations when digitized by using different IOSs. PURPOSE: To investigate the effect of IOS and FPD situation on the scan accuracy of two implants when partial-arch scans were performed. MATERIALS AND METHODS: Tissue level implants were placed in 3 maxillary models with implant spaces either at right first premolar and right first molar sites (Model 1, 3-unit FPD), at right canine and right first molar sites (Model 2, 4-unit FPD), or at lateral incisor sites (Model 3, 4-unit FPD). Reference standard tessellation language (STL) files of the models were generated by using an optical scanner (ATOS Capsule 200MV120). Two IOSs (CEREC Primescan [CP] and TRIOS 3 [TR]) were used to perform partial-arch scans (test-scans) of each model (n = 14), which were exported in STL format. A metrology-grade analysis software (GOM Inspect 2018) was used to superimpose test-scan STLs over the reference STL to calculate 3D distance, inter-implant distance, and angular (mesiodistal and buccopalatal) deviations. Trueness and precision analyses were performed by using bootstrap analysis of variance followed by Welch tests with Holm correction (α = 0.05). RESULTS: Trueness of the scans was affected by IOS and FPD situation when 3D distance deviations were considered, while inter-implant distance, mesiodistal angular, and buccopalatal angular deviations were only affected by the FPD situation (p < 0.001). Scan precision was affected by the interaction between the IOSs and the FPD situation when 3D distance and buccopalatal angular deviations were concerned, while IOSs and FPD situation were effective when all deviations were concerned (p≤ 0.001). When 3D distance deviations were considered, CP scans had higher accuracy TR scans in Models 1 and 3 (p ≤ 0.002), and the Model 1 scans had the highest accuracy (p < 0.001). When inter-implant distance deviations were considered, Model 1 scans had the highest accuracy with CP and higher accuracy than Model 2 when TR was used (p ≤ 0.030). When mesiodistal angular deviations were considered, Model 1 scans had the highest accuracy (p ≤ 0.040). When buccopalatal angular deviations were considered, Model 1 scans had the highest accuracy among models when CP was used (p ≤ 0.020). CONCLUSIONS: Posterior 3-unit fixed partial denture implant scans, CP scans, and combination of these two factors had accuracy either similar to or better than their tested counterparts.


Assuntos
Implantes Dentários , Imageamento Tridimensional , Técnica de Moldagem Odontológica , Modelos Dentários , Desenho Assistido por Computador , Prótese Parcial Fixa
3.
J Dent ; 127: 104358, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36356837

RESUMO

OBJECTIVES: To compare the accuracy and time efficiency of different digital workflows in 3 implant-supported fixed partial denture situations. METHODS: Three partially edentulous maxillary models with 2 implants (Model 1: implants at lateral incisor sites; Model 2: implants at right canine and first molar sites; Model 3: implants at right first premolar and first molar sites) were digitized (ATOS Capsule 200MV120, n=1) for reference scans. Test scans were performed for direct (Primescan (DDW-P) and Trios 3 (DDW-T)) and indirect (IDW) digital workflows (n=14). For IDW, stone casts (type IV) were obtained from vinylsiloxanether impressions and digitized (S600 Arti). The scan/impression and post processing times were recorded. Reference and test scans were superimposed (GOM Inspect) to calculate 3D point, inter-implant distance, and angular deviations. Kruskal-Wallis and Mann-Whitney tests were used for trueness and precision analyses (α=.05). RESULTS: Tested workflows affected trueness (P≤.030) and precision (P<.001) of scans (3D point, inter-implant distance, and angular deviations) within models. DDW-P had the highest accuracy (3D point deviations) for models 1 and 3 (P≤.046). IDW had the lowest accuracy for model 2 (P<.01). DDW-P had the highest accuracy (inter-implant distance deviations) for model 3 (P≤.048). Direct digital workflow mostly led to lower angular deviations (P≤.040), and higher precision for models 2 (mesiodistal direction) and 3 (P<.001). The time for direct digital workflow was shorter (P<.001), DDW-P being more efficient than DDW-T (P=.008). CONCLUSION: Direct digital workflow was more accurate and efficient than indirect digital workflow in tested partial edentulism situations with 2 implants. CLINICAL SIGNIFICANCE: Tested intraoral scanners can be recommended for accurate and efficient impressions of anterior and posterior 3- or 4-unit implant-supported fixed partial dentures.


Assuntos
Implantes Dentários , Técnica de Moldagem Odontológica , Modelos Dentários , Desenho Assistido por Computador , Imageamento Tridimensional , Prótese Parcial Fixa
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa