Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(14): e2318978121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38536755

RESUMO

Pressure-induced transformations in an archetypal chalcogenide glass (GeSe2) have been investigated up to 157 GPa by X-ray absorption spectroscopy (XAS) and molecular dynamics (MD) simulations. Ge and Se K-edge XAS data allowed simultaneous tracking of the correlated local structural and electronic changes at both Ge and Se sites. Thanks to the simultaneous analysis of extended X-ray absorption fine structure (EXAFS) signals of both edges, reliable quantitative information about the evolution of the first neighbor Ge-Se distribution could be obtained. It also allowed to account for contributions of the Ge-Ge and Se-Se bond distributions (chemical disorder). The low-density to high-density amorphous-amorphous transformation was found to occur within 10 to 30 GPa pressure range, but the conversion from tetrahedral to octahedral coordination of the Ge sites is completed above [Formula: see text] 80 GPa. No convincing evidence of another high-density amorphous state with coordination number larger than six was found within the investigated pressure range. The number of short Ge-Ge and Se-Se "wrong" bonds was found to increase upon pressurization. Experimental XAS results are confirmed by MD simulations, indicating the increase of chemical disorder under high pressure.

2.
J Synchrotron Radiat ; 29(Pt 1): 167-179, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34985434

RESUMO

Results of the 2018 commissioning and experimental campaigns of the new High Power Laser Facility on the Energy-dispersive X-ray Absorption Spectroscopy (ED-XAS) beamline ID24 at the ESRF are presented. The front-end of the future laser, delivering 15 J in 10 ns, was interfaced to the beamline. Laser-driven dynamic compression experiments were performed on iron oxides, iron alloys and bismuth probed by online time-resolved XAS.

3.
Phys Chem Chem Phys ; 22(42): 24299-24309, 2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33094300

RESUMO

The electronic and local structural properties of CuO under pressure have been investigated by means of X-ray absorption spectroscopy (XAS) at Cu K edge and ab initio calculations, up to 17 GPa. The crystal structure of CuO consists of Cu motifs within CuO4 square planar units and two elongated apical Cu-O bonds. The CuO4 square planar units are stable in the studied pressure range, with Cu-O distances that are approximately constant up to 5 GPa, and then decrease slightly up to 17 GPa. In contrast, the elongated Cu-O apical distances decrease continuously with pressure in the studied range. An anomalous increase of the mean square relative displacement (EXAFS Debye-Waller, σ2) of the elongated Cu-O path is observed from 5 GPa up to 13 GPa, when a drastic reduction takes place in σ2. This is interpreted in terms of local dynamic disorder along the apical Cu-O path. At higher pressures (P > 13 GPa), the local structure of Cu2+ changes from a 4-fold square planar to a 4+2 Jahn-Teller distorted octahedral ion. We interpret these results in terms of the tendency of the Cu2+ ion to form favorable interactions with the apical O atoms. Also, the decrease in Cu-O apical distance caused by compression softens the normal mode associated with the out-of-plane Cu movement. CuO is predicted to have an anomalous rise in permittivity with pressure as well as modest piezoelectricity in the 5-13 GPa pressure range. In addition, the near edge features in our XAS experiment show a discontinuity and a change of tendency at 5 GPa. For P < 5 GPa the evolution of the edge shoulder is ascribed to purely electronic effects which also affect the charge transfer integral. This is linked to a charge migration from the Cu to O, but also to an increase of the energy band gap, which show a change of tendency occurring also at 5 GPa.

4.
J Synchrotron Radiat ; 26(Pt 3): 801-810, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31074445

RESUMO

A new cell for in situ combined X-ray absorption, diffuse reflectance IR Fourier transform and mass spectroscopies (XAS-DRIFTS-MS) is presented. The cell stands out among others for its achievements and flexibility. It is possible to perform XAS measurements in transmission or fluorescence modes, and the cell is compatible with external devices like UV-light and Raman probes. It includes different sample holders compatible with the different XAS detection modes, different sample forms (free powder or self-supporting pellet) and different sample loading/total absorption. Additionally, it has a small dead volume and can operate over a wide range of temperature (up to 600°C) and pressure (up to 5 bar). Three research examples will be shown to illustrate the versatility of the cell. This cell covers a wider range of applications than any other cell currently known for this type of study.

5.
Proc Natl Acad Sci U S A ; 112(39): 12042-5, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26371317

RESUMO

Temperature, thermal history, and dynamics of Earth rely critically on the knowledge of the melting temperature of iron at the pressure conditions of the inner core boundary (ICB) where the geotherm crosses the melting curve. The literature on this subject is overwhelming, and no consensus has been reached, with a very large disagreement of the order of 2,000 K for the ICB temperature. Here we report new data on the melting temperature of iron in a laser-heated diamond anvil cell to 103 GPa obtained by X-ray absorption spectroscopy, a technique rarely used at such conditions. The modifications of the onset of the absorption spectra are used as a reliable melting criterion regardless of the solid phase from which the solid to liquid transition takes place. Our results show a melting temperature of iron in agreement with most previous studies up to 100 GPa, namely of 3,090 K at 103 GPa.

6.
Angew Chem Int Ed Engl ; 56(45): 14031-14035, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-28981203

RESUMO

Fluid catalytic cracking is a chemical conversion process of industrial scale. This process, utilizing porous catalysts composed of clay and zeolite, converts heavy crude-oil fractions into transportation fuel and petrochemical feedstocks. Among other factors iron-rich reactor and feedstream impurities cause these catalyst particles to permanently deactivate. Herein, we report tomographic X-ray absorption spectroscopy measurements that reveal the presence of dissimilar iron impurities of specific localization within a single deactivated particle. Whereas the iron natural to clay in the composite seems to be unaffected by operation, exterior-facing and feedstream-introduced iron was found in two forms. Those being minute quantities of ferrous oxide, located near regions of increased porosity, and impurities rich in Fe3+ , preferentially located in the outer dense part of the particle and suggested to contribute to the formation of an isolating amorphous silica alumina envelope.

7.
Chemistry ; 21(43): 15280-9, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26471442

RESUMO

Co-components are a powerful tool to tune the performance of catalysts, but their nature and their impact on the catalysts is often controversially discussed. In this study X-ray absorption spectroscopy (XAS) was employed to elucidate the nature of co-components and their impact on the catalytic reaction. In anatase-supported Pd-based catalysts for the gas-phase acetoxylation of toluene, less noble co-components (e.g., Mn, Co, and Sb) spread over the support in their oxidic form and changed their valence state on stream. Incorporated atoms such as C or a small part of the Sb affect the electronic structure of Pd. For the noble Au, only a weak interaction with the support and Pd was observed during time on stream. Only XAS at the K-edges together with investigations of the Pd L-edge for a better understanding of the electronic structure, supplemented by STEM for elemental mapping, allow such detailed insights.

8.
Environ Sci Technol ; 49(24): 14065-75, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26544528

RESUMO

U(VI) sorption to iron oxyhydroxides, precipitation of phosphate minerals, as well as biosorption on bacterial biomass are among the most reported processes able to scavenge U(VI) under oxidizing conditions. Although phosphates significantly influence bacterially mediated as well as iron oxyhydroxide mediated scavenging of uranium, the sorption or coprecipitation of U(VI) with poorly crystalline nanosized iron phosphates has been scarcely documented, especially in the presence of microorganisms. Here we show that dissolved U(VI) can be bound to amorphous iron phosphate during their deposition on Sphaerotilus natans filamentous bacteria. Uranium LIII-edge EXAFS analysis reveals that the adsorbed uranyl ions share an equatorial oxygen atom with a phosphate tetrahedron of the amorphous iron phosphate, with a characteristic U-P distance of 3.6 Å. In addition, the uranyl ions are connected to FeO6 octahedra with U-Fe distances at ~3.4 Å and at ~4.0 Å. The shortest U-Fe distance corresponds to a bidentate edge-sharing complex often reported for uranyl adsorption onto iron oxyhydroxides, whereas the longest U-Fe and U-P distances can be interpreted as a bidentate corner-sharing complex, in which two adjacent equatorial oxygen atoms are shared with the vertices of a FeO6 octahedron and of a phosphate tetrahedron. Furthermore, based on these sorption reactions, we demonstrate the ability of an attached S. natans biofilm to remove uranium from solution without any filtration step.


Assuntos
Compostos Férricos/química , Ferro/química , Sphaerotilus/química , Urânio/química , Adsorção , Biofilmes , Precipitação Química , Análise dos Mínimos Quadrados , Microscopia Eletrônica de Varredura , Minerais/química , Fosfatos/química , Espectrometria por Raios X , Urânio/isolamento & purificação
9.
Phys Chem Chem Phys ; 17(4): 2464-74, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25491072

RESUMO

The structural properties of liquid 1-butyl-3-methylimidazolium iodide [C4mim]I have been investigated using an integrated approach that combines EXAFS spectroscopy and molecular dynamics (MD) simulations. A well defined first coordination shell composed on average of 4.5 I(-) ions around the imidazolium cation has been evidenced, and the structural arrangement of the I(-) ions has been found to be different in the proximity of the most acidic hydrogen atom of the imidazolium ring, as compared to the other two ring protons: in the former case the I(-) ion is not coplanar with the imidazolium ring plane, but it prefers to be above and below the plane itself, while in the latter the anion has the same probability of being or not being coplanar with the plane. A quantitative analysis of the I K-edge EXAFS spectrum of liquid [C4mim]I has been carried out starting from the structural information on the system derived from the MD simulation. This combined approach allows one to reduce the number of correlated model parameters required in the fitting of the experimental data and to increase the reliability of the EXAFS data analysis that represents a non-trivial task when dealing with disordered systems. Moreover, the good agreement between the EXAFS experimental and theoretical spectra of liquid [C4mim]I has proven the reliability of the MD results and force field employed.

10.
J Synchrotron Radiat ; 21(Pt 6): 1240-6, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25343790

RESUMO

A new FReLoN (Fast-Readout Low-Noise) high-frame-rate detector adopted for the fast continuous collection of X-ray absorption spectra is presented. The detector is installed on the energy-dispersive X-ray absorption beamline ID24 at the ESRF and is capable of full time-resolved EXAFS spectra collection with over 4 kHz repetition rate and 0.2 ms exposure time. An example of the in situ kinetic study of the high-temperature oxidation of metallic iron is presented.

11.
J Phys Condens Matter ; 35(26)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36990102

RESUMO

Pressure-induced transformations in glassy GeSe2have been studied using the x-ray absorption spectroscopy. Experiments have been carried out at the scanning-energy beamline BM23 (European Synchrotron Radiation Facility) providing a micrometric x-ray focal spot up to pressures of about 45 GPa in a diamond anvil cell. Both Se and Ge K-edge experiments were performed under different hydrostatic conditions identifying the metallization onsets by accurate determinations of the edge shifts. The semiconductor-metal transition was observed to be completed around 20 GPa when neon was used as a pressure transmitting medium (PTM), while this transition was slightly shifted to lower pressures when no PTM was used. Accurate double-edge extended x-ray absorption fine structure (EXAFS) refinements were carried out using advanced data-analysis methods. EXAFS data-analysis confirmed the trend shown by the edge shifts for this disordered material, showing that the transition from tetrahedral to octahedral coordination for Ge sites is not fully achieved at 45 GPa. Results of present high pressure EXAFS experiments have shown the absence of significant neon incorporation into the glass within the pressure range up to 45 GPa.

12.
Chem Sci ; 14(41): 11521-11531, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37886093

RESUMO

The application of Cu-CHA catalysts for the selective catalytic reduction of NOx by ammonia (NH3-SCR) in exhaust systems of diesel vehicles requires the use of fuel with low sulfur content, because the Cu-CHA catalysts are poisoned by higher concentrations of SO2. Understanding the mechanism of the interaction between the Cu-CHA catalyst and SO2 is crucial for elucidating the SO2 poisoning and development of efficient catalysts for SCR reactions. Earlier we have shown that SO2 reacts with the [Cu2II(NH3)4O2]2+ complex that is formed in the pores of Cu-CHA upon activation of O2 in the NH3-SCR cycle. In order to determine the products of this reaction, we use X-ray absorption spectroscopy (XAS) at the Cu K-edge and S K-edge, and X-ray emission spectroscopy (XES) for Cu-CHA catalysts with 0.8 wt% Cu and 3.2 wt% Cu loadings. We find that the mechanism for SO2 uptake is similar for catalysts with low and high Cu content. We show that the SO2 uptake proceeds via an oxidation of SO2 by the [Cu2II(NH3)4O2]2+ complex, resulting in the formation of different CuI species, which do not react with SO2, and a sulfated CuII complex that is accumulated in the pores of the zeolite. The increase of the SO2 uptake upon addition of oxygen to the SO2-containing feed, evidenced by X-ray adsorbate quantification (XAQ) and temperature-programmed desorption of SO2, is explained by the re-oxidation of the CuI species into the [Cu2II(NH3)4O2]2+ complexes, which makes them available for reaction with SO2.

13.
Biotechnol J ; 18(10): e2300173, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37337924

RESUMO

Magnetosomes are magnetite nanoparticles biosynthesized by magnetotactic bacteria. Given their potential clinical applications for the diagnosis and treatment of cancer, it is essential to understand what becomes of them once they are within the body. With this aim, here we have followed the intracellular long-term fate of magnetosomes in two cell types: cancer cells (A549 cell line), because they are the actual target for the therapeutic activity of the magnetosomes, and macrophages (RAW 264.7 cell line), because of their role at capturing foreign agents. It is shown that cells dispose of magnetosomes using three mechanisms: splitting them into daughter cells, excreting them to the surrounding environment, and degrading them yielding less or non-magnetic iron products. A deeper insight into the degradation mechanisms by means of time-resolved X-ray absorption near-edge structure (XANES) spectroscopy has allowed us to follow the intracellular biotransformation of magnetosomes by identifying and quantifying the iron species occurring during the process. In both cell types there is a first oxidation of magnetite to maghemite and then, earlier in macrophages than in cancer cells, ferrihydrite starts to appear. Given that ferrihydrite is the iron mineral phase stored in the cores of ferritin proteins, this suggests that cells use the iron released from the degradation of magnetosomes to load ferritin. Comparison of both cellular types evidences that macrophages are more efficient at disposing of magnetosomes than cancer cells, attributed to their role in degrading external debris and in iron homeostasis.


Assuntos
Magnetossomos , Neoplasias , Magnetossomos/química , Ferro/metabolismo , Ferritinas/análise , Ferritinas/metabolismo , Macrófagos/metabolismo , Neoplasias/metabolismo
14.
J Synchrotron Radiat ; 19(Pt 5): 806-13, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22898961

RESUMO

A Calvet-type differential scanning calorimeter has been implemented on a synchrotron beamline devoted to X-ray absorption spectroscopy. As a case study, the complex crystallization process in amorphous Ge(15)Sb(85) phase-change material is followed by simultaneous calorimetric and quick-EXAFS measurements. A first crystallization at 514(1) K is related to the crystallization of an Sb-rich phase accompanied by segregation of Ge atoms. Upon further heating, the as-formed amorphous Ge regions crystallize at 604(1) K. A quantitative analysis of the latent heat allows a Ge(11)Sb(89) stoichiometry to be proposed for the first crystallized phase.

15.
J Phys Chem C Nanomater Interfaces ; 126(11): 5175-5179, 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36157514

RESUMO

Hard X-ray absorption spectroscopy (XAS) is frequently applied in catalysis and gas sorption studies to monitor changes in oxidation states, coordination numbers, and interatomic distances of active sites under in situ and operando conditions. However, transmission XAS data can reveal also the change in the total amount of guest species adsorbed on the whole sample. Surprisingly, to the best of our knowledge, the latter property has never been exploited. Here, we present a simple method to quantify the amount of adsorbates from XAS data collected during the interaction of the sample with gases or liquids. The method relies on monitoring the change of the total absorption level below the measured absorption edge and does not require any additional instrumentation or modification of the XAS data collection procedure. Essentially, it is a way to obtain the information analogous to the one delivered by temperature-programmed reduction (TPR), temperature-programmed desorption (TPD), or thermogravimetric analysis (TGA) directly from XAS at no extra cost.

16.
JACS Au ; 2(4): 787-792, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35557768

RESUMO

Cu-exchanged chabazite zeolites (Cu-CHA) are effective catalysts for the NH3-assisted selective catalytic reduction of NO (NH3-SCR) for the abatement of NO x emission from diesel vehicles. However, the presence of a small amount of SO2 in diesel exhaust gases leads to a severe reduction in the low-temperature activity of these catalysts. To shed light on the nature of such deactivation, we characterized a Cu-CHA catalyst under well-defined exposures to SO2 using in situ X-ray absorption spectroscopy. By varying the pretreatment procedure prior to the SO2 exposure, we have selectively prepared CuI and CuII species with different ligations, which are relevant for the NH3-SCR reaction. The highest reactivity toward SO2 was observed for CuII species coordinated to both NH3 and extraframework oxygen, in particular for [CuII 2(NH3)4O2]2+ complexes. Cu species without either ammonia or extraframework oxygen ligands were much less reactive, and the associated SO2 uptake was significantly lower. These results explain why SO2 mostly affects the low-temperature activity of Cu-CHA catalysts, since the dimeric complex [CuII 2(NH3)4O2]2+ is a crucial intermediate in the low-temperature NH3-SCR catalytic cycle.

17.
J Synchrotron Radiat ; 18(Pt 2): 176-82, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21335903

RESUMO

The new implementation of QEXAFS acquisition on the general purpose EXAFS beamline BM29 at the European Synchrotron Radiation Facility is presented. By adopting a continuous-scan mode, a high signal-to-noise ratio can be maintained, together with a fixed exit beam and full compatibility with step-by-step operation, while reducing acquisition times to a few seconds. The new equipment implemented on the beamline is described and the potential of this application is demonstrated with a few examples.

18.
J Synchrotron Radiat ; 18(Pt 2): 224-8, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21335909

RESUMO

Using a fast silicon strip detector, a multi-frame acquisition scheme was implemented to perform energy-dispersive X-ray magnetic circular dichroism at the iron K-edge in pulsed high magnetic fields. The acquisition scheme makes use of the entire field pulse. The quality of the signal obtained from samples of ferrimagnetic erbium iron garnet allows for quantitative evaluation of the signal amplitude. Below the compensation point, two successive field-induced phase transitions and the reversal of the net magnetization of the iron sublattices in the intermediate phase were observed.

19.
Nature ; 435(7038): 78-81, 2005 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-15875018

RESUMO

The frequencies of extended X-ray absorption fine-structure (EXAFS) measurements, which are oscillations occurring on the high-energy side of an X-ray absorption edge, can be used to identify interatomic distances in materials. We have used a dispersive X-ray spectrometer, which has no moving components, to make rapid measurements with minimal energy drift of the difference in EXAFS from the Fe K edge in an iron-cobalt thin film undergoing periodic strain through magnetostriction. We show that magnetostriction can be detected by differential X-ray absorption. The magnitude of the recorded signal relative to the noise shows a sensitivity to mean differential atomic motion of one femtometre: a factor of 100 times more sensitive than that normally available.

20.
Phys Chem Chem Phys ; 12(21): 5535-46, 2010 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-20436977

RESUMO

Almost 30 years have elapsed since the design and evaluation of the first energy dispersive X-ray absorption spectrometer to measure Extended X-Ray Absorption Fine Structure (EXAFS) spectra rapidly using synchrotron radiation. Since then, applications of this method have greatly evolved, and technical solutions were found to adapt these spectrometers to even more challenging experiments. From the initial time-resolved studies to track rapid changes in the local and electronic structure of absorber atoms in disordered systems, to the investigation of matter at high pressure, new applications are now emerging such as studies at extreme pulsed magnetic fields and two dimensional mapping of heterogeneous samples with micron resolution, where each pixel contains full XAS information. In view of the construction of new synchrotron sources and beamlines, and of the upcoming X-Ray Free Electron Lasers, we give a few examples of the scientific impact of Energy Dispersive X-Ray Absorption Spectroscopy (EDXAS) in different scientific domains. We then give a brief overview of recent technical advances, new applications and future developments in the field of high brilliance EDXAS.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa