Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nano Lett ; 23(7): 2695-2702, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36920080

RESUMO

Internal interfaces in Weyl semimetals (WSMs) are predicted to host distinct topological features that are different from the commonly studied external interfaces (crystal-to-vacuum boundaries). However, the lack of atomically sharp and crystallographically oriented internal interfaces in WSMs makes it difficult to experimentally investigate topological states buried inside the material. Here, we study a unique internal interface known as merohedral twin boundary in chemically synthesized single-crystal nanowires (NWs) of CoSi, a chiral WSM of space group P213 (No. 198). Scanning transmission electron microscopy reveals that this internal interface is a (001) twin plane which connects two enantiomeric counterparts at an atomically sharp interface with inversion twinning. Ab initio calculations show localized internal Fermi arcs at the (001) twin plane that can be clearly distinguished from both external Fermi arcs and bulk states. These merohedrally twinned CoSi NWs provide an ideal platform to explore topological properties associated with internal interfaces in WSMs.

2.
Nat Mater ; 21(3): 305-310, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35087239

RESUMO

The concept of topology has dramatically expanded the research landscape of magnetism, leading to the discovery of numerous magnetic textures with intriguing topological properties. A magnetic skyrmion is an emergent topological magnetic texture with a string-like structure in three dimensions and a disk-like structure in one and two dimensions. Skyrmions in zero dimensions have remained elusive due to challenges from many competing orders. Here, by combining electron holography and micromagnetic simulations, we uncover the real-space magnetic configurations of a skyrmionic vortex structure confined in a B20-type FeGe tetrahedral nanoparticle. An isolated skyrmionic vortex forms at the ground state and this texture shows excellent robustness against temperature without applying a magnetic field. Our findings shed light on zero-dimensional geometrical confinement as a route to engineer and manipulate individual skyrmionic metastructures.


Assuntos
Nanopartículas
3.
Nano Lett ; 17(1): 508-514, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-27936792

RESUMO

Magnetic skyrmions are topologically stable vortex-like spin structures that are promising for next generation information storage applications. Materials that host magnetic skyrmions, such as MnSi and FeGe with the noncentrosymmetric cubic B20 crystal structure, have been shown to stabilize skyrmions upon nanostructuring. Here, we report a chemical vapor deposition method to selectively grow nanowires (NWs) of cubic FeGe out of three possible FeGe polymorphs for the first time using finely ground particles of cubic FeGe as seeds. X-ray diffraction and transmission electron microscopy (TEM) confirm that these micron-length NWs with ∼100 nm to 1 µm diameters have the cubic B20 crystal structure. Although Fe13Ge8 NWs are also formed, the two types of NWs can be readily differentiated by their faceting. Lorentz TEM imaging of the cubic FeGe NWs reveals a skyrmion lattice phase under small applied magnetic fields (∼0.1 T) at 233 K, a skyrmion chain state at lower temperatures (95 K) and under high magnetic fields (∼0.4 T), and a larger skyrmion stability window than bulk FeGe. This synthetic approach to cubic FeGe NWs that support stabilized skyrmions opens a route toward the exploration of new skyrmion physics and devices based on similar nanostructures.

4.
Nanoscale Horiz ; 9(3): 479-486, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38258388

RESUMO

As the demand for increasingly varied types of 1-dimensional (1D) materials grows, there is a greater need for new methods to synthesize these types of materials in a simple and scalable way. Chemical exfoliation is commonly used to make 2-dimensional (2D) materials, often in a way that is both straightforward and suitable for making larger quantities, yet this method has thus far been underutilized for synthesizing 1D materials. In the few instances when chemical exfoliation has been used to make 1D materials, the starting compound has been a van der Waals material, thus excluding any structures without these weak bonds inherently present. We demonstrate here that ionically bonded crystals can also be chemically exfoliated to 1D structures by choosing KFeS2 as an example. Using chemical exfoliation, antiferromagnetic 1D nanoribbons can be yielded in a single step. The nanoribbons are crystalline and closely resemble the parent compound both in structure and in intrinsic antiferromagnetism. The facile chemical exfoliation of an ionically bonded crystal shown in this work opens up opportunities for the synthesis of both magnetic and non-magnetic 1D nanomaterials from a greater variety of starting structures.

5.
J Family Med Prim Care ; 12(6): 1229-1230, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37636168

RESUMO

We describe the case of a young male presenting with hiccups refractory to antacids. Due to high index of suspicion was evaluated with a chest X-ray which revealed pericardial effusion. The effusion was drained, and the hiccups resolved. It is a teaching moment, to consider simple imaging, i.e., chest X-ray in patients with refractory hiccups to rule out more serious underlying causes.

6.
Biomolecules ; 13(3)2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36979367

RESUMO

Insulin resistance (IR) is considered the precursor and the key pathophysiological mechanism of type 2 diabetes (T2D) and metabolic syndrome (MetS). However, the pathways that IR shares with T2D are not clearly understood. Meta-analysis of multiple DNA microarray datasets could provide a robust set of metagenes identified across multiple studies. These metagenes would likely include a subset of genes (key metagenes) shared by both IR and T2D, and possibly responsible for the transition between them. In this study, we attempted to find these key metagenes using a feature selection method, LASSO, and then used the expression profiles of these genes to train five machine learning models: LASSO, SVM, XGBoost, Random Forest, and ANN. Among them, ANN performed well, with an area under the curve (AUC) > 95%. It also demonstrated fairly good performance in differentiating diabetics from normal glucose tolerant (NGT) persons in the test dataset, with 73% accuracy across 64 human adipose tissue samples. Furthermore, these core metagenes were also enriched in diabetes-associated terms and were found in previous genome-wide association studies of T2D and its associated glycemic traits HOMA-IR and HOMA-B. Therefore, this metagenome deserves further investigation with regard to the cardinal molecular pathological defects/pathways underlying both IR and T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Resistência à Insulina/genética , Estudo de Associação Genômica Ampla , Fenótipo , Análise de Sequência com Séries de Oligonucleotídeos , Insulina/metabolismo , Glicemia/metabolismo
7.
PLoS One ; 18(12): e0295492, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38064530

RESUMO

BACKGROUND: Asian-Indians show thin fat phenotype, characterized by predominantly central deposition of excess fat. The roles of abdominal subcutaneous fat (SAT), intra-peritoneal adipose tissue, and fat depots surrounding the vital organs (IPAT-SV) and liver fat in insulin resistance (IR), type-2 diabetes (T2D) and metabolic syndrome (MetS) in this population are sparsely investigated. AIMS AND OBJECTIVES: Assessment of liver fat, SAT and IPAT-SV by MRI in subjects with T2D and MetS; and to investigate its correlation with IR, specifically according to different quartiles of HOMA-IR. METHODS: Eighty T2D and the equal number of age sex-matched normal glucose tolerant controls participated in this study. Abdominal SAT, IPAT-SV and liver fat were measured using MRI. IR was estimated by the Homeostatic Model Assessment for Insulin Resistance (HOMA-IR). RESULTS: T2D and MetS subjects have higher quantity liver fat and IPAT-SV fat than controls (P = 9 x 10-4 and 4 x 10-4 for T2D and 10-4 and 9 x 10-3 for MetS subjects respectively). MetS subjects also have higher SAT fat mass (P = 0.012), but not the BMI adjusted SAT fat mass (P = 0.48). Higher quartiles of HOMA-IR were associated with higher BMI, W:H ratio, waist circumference, and higher liver fat mass (ANOVA Test P = 0.020, 0.030, 2 x 10-6 and 3 x 10-3 respectively with F-values 3.35, 3.04, 8.82, 4.47 respectively). In T2D and MetS subjects, HOMA-IR showed a moderately strong correlation with liver fat (r = 0.467, P < 3 x 10-5 and r = 0.493, P < 10-7), but not with SAT fat and IPAT-SV. However, in MetS subjects IPAT-SV fat mass showed borderline correlation with IR (r = 0.241, P < 0.05), but not with the BMI adjusted IPAT-SV fat mass (r = 0.13, P = 0.26). In non-T2D and non-MetS subjects, no such correlation was seen. On analyzing the correlation between the three abdominal adipose compartment fat masses and IR according to its severity, the correlation with liver fat mass becomes stronger with increasing quartiles of HOMA-IR, and the strongest correlation is seen in the highest quartile (r = 0.59, P < 10-3). On the other hand, SAT fat mass tended to show an inverse relation with IR with borderline negative correlation in the highest quartile (r = -0.284, P < 0.05). IPAT-SV fat mass did not show any statistically significant correlation with HOMA-IR, but in the highest quartile it showed borderline, but statistically insignificant positive correlation (P = 0.07). CONCLUSION: In individuals suffering from T2D and MetS, IR shows a trend towards positive and borderline negative correlation with liver fat and SAT fat masses respectively. The positive trend with liver fat tends to become stronger with increasing quartile of IR. Therefore, these findings support the theory that possibly exhaustion of protective compartment's capacity to store excess fat results in its pathological deposition in liver as ectopic fat.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Síndrome Metabólica , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Índice de Massa Corporal , Gordura Abdominal/diagnóstico por imagem , Gordura Abdominal/metabolismo
8.
Sci Rep ; 11(1): 10632, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34017037

RESUMO

The prevalence of Type 2 Diabetes has reached an epidemic proportion particularly in south Asian countries. We have earlier shown that the anatomical fat distribution, termed 'thin fat phenotype' in this population indeed plays a major role for their T2D-predisposition it is indeed the sick fat or adiposopathy, which is the root cause of metabolic syndrome and diabetes and affects both-peripheral, as well as visceral adipose tissue compartments. In present study, we have attempted to unravel the altered regulatory mechanisms at the level of transcription factors, and miRNAs those may likely accounts to T2D pathophysiology in femoral subcutaneous adipose tissue. We prioritized transcription factors and protein kinases as likely upstream regulators of obtained differentially expressed genes in this RNA-seq study. An inferred network of these upstream regulators was then derived and the role of TFs and miRNAs in T2D pathophysiology was explored. In conclusions, this RNS-Seq study finds that peripheral subcutaneous adipose tissue among Asian Indians show pathology characterized by altered lipid, glucose and protein metabolism, adipogenesis defect and inflammation. A network of regulatory transcription factors, protein kinases and microRNAs have been imputed which converge on the process of adipogenesis. As the majority of these genes also showed altered expression in diabetics and some of them are also circulatory, therefore they deserve further investigation for potential clinical diagnostic and therapeutic applications.


Assuntos
Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , RNA-Seq , Gordura Subcutânea/metabolismo , Transcriptoma/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Humanos , Índia , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Transcrição/metabolismo
9.
J Clin Endocrinol Metab ; 106(12): e4935-e4955, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34333639

RESUMO

CONTEXT: Precise genotype-phenotype correlations in Turner syndrome (TS) have not yet been deciphered. The chromosomal basis of the clinical TS phenotype in the absence of X chromosome aberrations on conventional karyotyping remains more and less unexplored. OBJECTIVE: To elucidate the high-resolution chromosomal picture and analyze the genotype-phenotype associations in girls with clinical phenotype of TS by chromosomal microarray. DESIGN AND PATIENTS: Cross sectional observational study conducted between October 2018 and January 2020 on 47 girls presenting the clinical TS phenotype and fulfilling the criteria for chromosomal analysis. SETTING: Outpatient department at Department of Endocrinology and the Molecular Research Lab at tertiary care teaching institution. RESULTS: The copy number variation (CNV) polymorphs were more frequent on autosomes than X chromosomes, and they were detected in 89.3%, 61.7%, and 92.8% of patients, respectively, on chromosome 14 or X or both. A total 445 and 64 CNV polymorphs were discovered on chromosome X and 14, respectively. The latter exhibited either gain at 14q32.33, loss at 14q11.2, or both. Karyotype was available for 27 patients; 55.6% of cases displayed X chromosome abnormalities while 44.4% cases had a normal karyotype. Functional interactomes of the genes that were present in chromosome 14 CNVs and those known to be associated with TS showed an overlap of 67% and enriched various development-related cellular pathways underlying TS phenotype. CONCLUSIONS: On high-resolution karyotype analysis, clinical phenotype of TS can be associated with CNV defects in autosomes, specifically chromosome 14 or X chromosome or both. The syndrome of chromosome 14 CNV defects with and without X-chromosomal defects clinically mimics TS and shares a common genomic network that deserves further investigations.


Assuntos
Cromossomos Humanos Par 14/genética , Variações do Número de Cópias de DNA , Fenótipo , Síndrome de Turner/patologia , Adolescente , Adulto , Criança , Estudos Transversais , Feminino , Seguimentos , Humanos , Prognóstico , Síndrome de Turner/genética , Adulto Jovem
10.
Sci Adv ; 7(43): eabj4086, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34678059

RESUMO

Controlling the magnetic spin states of two-dimensional (2D) van der Waals (vdW) materials with strong electronic or magnetic correlation is important for spintronic applications but challenging. Crystal defects that are often present in 2D materials such as transition metal phosphorus trisulfides (MPS3) could influence their physical properties. Here, we report the effect of sulfur vacancies on the magnetic exchange interactions and spin ordering of few-layered vdW magnetic Ni1−xCoxPS3 nanosheets. Magnetic and structural characterization in corroboration with theoretical calculations reveal that sulfur vacancies effectively suppress the strong intralayer antiferromagnetic correlation, giving rise to a weak ferromagnetic ground state in Ni1−xCoxPS3 nanosheets. Notably, the magnetic field required to tune this ferromagnetic state (<300 Oe) is much lower than the value needed to tune a typical vdW antiferromagnet (> several thousand oersted). These findings provide a previously unexplored route for controlling competing correlated states and magnetic ordering by defect engineering in vdW materials.

11.
ACS Nano ; 13(7): 7833-7841, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31268671

RESUMO

Magnetic skyrmions are topological spin textures that have shown promise for future nonvolatile memory devices. Herein, we report on the stability of magnetic skyrmions in alloyed cubic B20 Fe1-xCoxSi nanowires (NWs) determined using off-axis electron holography and magnetotransport measurements. This study presents the real space observation of one-dimensional skyrmion lattice in a NW of Fe1-xCoxSi which shows that the skyrmion phase in a Fe0.75Co0.25Si NW exists at lower applied magnetic fields (200 Oe) with a reduced domain size (28 ± 2 nm) in comparison to bulk and thin film samples. Magnetotransport measurements were used to observe the helimagnetic transition temperature dependence on the cobalt concentration in the Fe1-xCoxSi NWs. Field-dependent magnetoresistance measurements of Fe1-xCoxSi NWs under applied magnetic field parallel to the NW axis and their second derivative plots reveal the critical fields for the magnetic state transition at different temperatures. A representative magnetic phase diagram constructed with the results from transport measurements of a Fe0.81Co0.19Si NW clearly shows expanded stability region for magnetic skyrmions in the Fe1-xCoxSi NWs.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa